

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), Volume 5, Special Issue 2, May 2015)

International Conference on Advances in Computer and Communication Engineering (ACCE-2015)

Conference Organized by Vemana Institute of Technology, Bangalore, INDIA. Page 30

AIDI: Adaptive Image Denoising IP-Core Based on FPGA for

Real Time Application
Honnambika M

1
, Latha K

2
, Shishir

K

3

1
PG student (VLSI Design and Embedded systems), SIET, Tumkur, Karnataka, India

2
Assistant Prof., Dept. of E&C, SIET, Tumkur, Karnataka, India

3
HOD, Dept. of E&C, SIET, Tumkur, Karnataka, India

1
honnambika@gmail.com,

2
Lathaprasanna.K@gmail.com,

3
shishirkn6@gmail.com

Abstract—The presence of noise in images can

significantly impact the performances of computer

vision algorithms and digital image processing. Thus,

noise should be removed to improve the robustness of

the entire process. Denoising or noise reduction is one of

the most essential processes for digital image

processing. The main goal of denoising is how to remove

the noise while keeping the important features of the

image. The denoising methods should not alter the

original image, most denoising methods degrade or

remove the fine details. This paper presents an

Adaptive Image Denoising IP-core (AIDI) for real time

applications. Here core first estimates the level of noise

in the input image, then applies an adaptive Gaussian

smoothing filter to remove the estimated noise. The

filtering parameters are computed on-the-fly, adapting

them to the level of noise in the image and pixel by pixel

to preserve image information (e.g., edges or corners).

In this context, hardware acceleration is crucial and

Field Programmable Gate Arrays (FPGAs) best fit the

growing demand of computational capabilities. The

architecture uses FPGA, it shows the improvements

with respect to a standard static filtering approach.

Index Terms－ Gaussian noise, noise estimation,

Laplacian operator, noise reduction, edge detection.

Adaptive Gaussian filtering, Gaussian noise, denoising.

I. INTRODUCTION

Nowadays, computer vision is one of the most evolving

areas of Information Technology (IT). Image processing is

widely used in several application fields, such as aerospace,

medical, or automotive.

In every computer vision application, one or more

images are taken from a camera, and processed, in order to

extract information used for edge detection, features

identification, or image registration.

Image processing is widely used in many fields, such as

medical imaging, scanning techniques, printing skills,

license plate recognition, face recognition, and so on.

Unfortunately, the technology provided by modern Charge

Coupled Device (CCD) sensors suffers from noise. In a

CCD camera there are many potential sources of noise,

such as Shot Noise, Dark current, Read Noise and

Quantization noise are some of examples. CCD

manufacturers typically Combine these on-chip noise

sources, and express them in terms of a number of electrons

Root Mean Square (RMS). However, in image the level of

noise does not depend on the adopted sensor only but also

depends on the environmental condition as well. Noise

estimation and removal are thus necessary to improve the

effectiveness of image processing algorithms.

To estimate how an image is affected by noise, a well

characterized noise model must be defined. Since noise

sources are random in nature, their values must be handled

as random variables, described by probabilistic functions.

In fact, Dark Current, proportional to the integration time

and temperature, is modeled as a Gaussian distribution,

Shot and Read Noise, caused by on-chip output amplifiers,

are modeled as Poisson distributions, and, detector

malfunction or hot pixels are modeled by an impulsive

distribution.In most cases, all Gaussian and Poisson

distributed noises are combined, approximating the image

noise with an equivalent additive zero-mean white

Gaussian noise distribution, characterized by a variance

n
2
.

mailto:3shishirkn6@gmail.com

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), Volume 5, Special Issue 2, May 2015)

International Conference on Advances in Computer and Communication Engineering (ACCE-2015)

Conference Organized by Vemana Institute of Technology, Bangalore, INDIA. Page 31

While the impulsive noise can be removed in a relatively

simple way, Gaussian noise removal is a non trivial task,

since, to be more effective, the filter must be adapted to the

actual level of noise in the image. Noise estimation is

therefore a fundamental task. Nonetheless, in modern real-

time systems, a software implementation of these complex

algorithms cannot be used, since it does not meet real-time

constraints. In this context, FPGAs are a good choice to

hardware accelerate the noise estimation and removal tasks.

This enables subsequent image processing algorithms to

fully exploit the remaining timing budget.

This paper presents AIDI: an Adaptive Image Denoising

FPGA-based IP-core for real-time applications. The core

first estimates the level of noise in the input image. It then

applies an adaptive Gaussian smoothing filter to remove

the estimated Gaussian noise. The filtering parameters are

computed on the-fly, adapting them to the level of noise of

the current image. Furthermore, the filter uses local image

information to discriminate whether a pixel belongs to an

edge in the image or not, preserving it for subsequent edge

detection or image registration algorithms. An FPGA-based

implementation has been targeted, since FPGAs are

increasingly used in real-time systems as hardware

accelerators, even in mission-critical applications, such as

aerospace field. The paper is organized as follows: Section

II gives an overview on noise estimation and removal

approaches, and their existing hardware implementations.

Section III presents the hardware architecture of the

proposed IP-core, while Section IV shows the experimental

results. Finally, in Section V, some conclusions are drawn.

II. RELATED WORK

Noise estimation methods, targeting additive white

Gaussian noise, can be classified in two categories: filter-

based and block-based. With the former method, the noisy

image is filtered by a low pass filter to suppress image

structures (e.g., edges), and then the noise variance is

computed based on the difference between the filtered and

the noisy image (called difference image) [1]. With the

latter method, the image is split into cells, and the noise

variance is computed identifying the most homogeneous

cells [2][3].

Proved that filter-based methods work better than block

based methods at high noise levels, but they are complex

and require high computational load.

In addition, filter-based methods assume the difference

image as the noise affecting the input image, but this

assumption is not true for images with several structures or

details.

To tackle this problem, [1] estimates noise by combining

a simple edge detector and a low-pass filter. The proposed

algorithm has good performances even with high detailed

images at different level of noise, and it requires only

simple mathematical operations (i.e., convolutions and

averaging operations).

Denoising methods can be based on linear or on non-

linear models. On the one hand, median and Gaussian

filters are commonly used to remove noise, offering a good

trade-off between complexity and effectiveness in

smoothing out noise. These methods work well in the flat

regions of images, but they do not well preserve the image

edges, that appear smoothed. On the other hand, denoising

methods based on non-linear models (e.g., wavelets-based

methods) can handle edges in a better way, but are more

complex, and often not applicable in real-time image

processing for high resolution images.

In [4] the authors propose an adaptive Gaussian filter

which tries to limit the edge smoothing problem of standard

Gaussian filtering methods. A large filter variance is

effective in smoothing out noise, but, at the same time, it

distorts those parts of the image where there are abrupt

changes in pixel intensity. This can lead to edge position

displacement, vanishing of edges, or phantom edges (i.e.,

artifacts in the image).

To address this problem, [4] adapts the filter variance to

the local characteristics of the input image. It makes use of

the local variance of the image, and the estimated Gaussian

noise in the image. It has been proven that this adaptive

filtering approach succeeds in preserving edges and

features of an image, even in presence of noise, better than

a static filtering approach.

Hardware implementations of denoising methods have

been widely investigated. [5] Propose FPGA-based

implementations of median filters. However, median

filtering is strictly recommended for impulse noise removal

(i.e., Salt and-Pepper noise), while it does not provide good

results when the image is affected by Gaussian noise. An

FPGA-based implementation of a Gaussian smoother has

been proposed in[6], but its main drawback is the non-

adaptivity of the filter, which results in edge smoothing. [7]

propose implementations of wavelet-based and bilateral

filter image denoisers, respectively.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), Volume 5, Special Issue 2, May 2015)

International Conference on Advances in Computer and Communication Engineering (ACCE-2015)

Conference Organized by Vemana Institute of Technology, Bangalore, INDIA. Page 32

However, none of these works account for a noise

estimation module to be included into the hardware

architecture. In Cartesian Genetic Programming (CGP)

image filters have been proposed. CGP-based filters are

able to reduce the noise on the image while preserving

edges. Moreover, they can be efficiently implemented on

FPGAs requiring few hardware resources. However, since

CGP filters are based on evolutionary algorithms, they

require a lot of iterations to provide the filtered image,

making them inappropriate for real time applications.

Hardware implementations of noise estimators have not

been deeply investigated by the research community. The

proposed architecture wastes a lot of hardware and memory

resources to perform sorting and logarithmic operations.

Moreover a noise removal module is not included in the

architecture. The presented paper introduces a

comprehensive FPGA-based architecture, including noise

estimation and noise removal in a single IP-core. It targets

the estimation and removal of additive white Gaussian

noise. The chosen adaptive Gaussian filtering approach

ensures edge preserving capability, while the noise

estimation algorithm is able to estimate the variance of

Gaussian noise with high accuracy[1][4].

The proposed adaptive FPGA-based architecture ensures

real time performances, even with 1024x1024 pixels grey-

scale images, with 8 bit-per-pixel resolution (bpp).

Nonetheless, the proposed architecture uses few hardware

resources, allowing to include, in the same device,

additional image processing algorithms.

III. AIDI ARCHITECTURE

AIDI is a highly parallelized and pipelined FPGA-based

IPcore that gets in input, through a 32-bit interface, a

1024x1024 grey scale image (e.g., from a CCD camera)

with 8 bpp and outputs a filtered pixel each clock cycle,

through a 25 bit interface. Input pixels are received as a set

of 32-bit packets (i.e., 4 pixels are received in a clock

cycle), without any header or padding bit.

In order to self-adapt the Gaussian filter to the current

input image, AIDI applies the approach presented in [4].

This approach can be mathematically formalized as

follow:

 (1)
Where

2
f (x, y) is the variance of the Gaussian filter

to be applied at the pixel of the input image in (x, y)

position,
2
n is the estimated white Gaussian noise

variance of the input image, k is a constant equal to 1.5,

and
2

OI (x, y) is the local variance of the image without

noise (i.e., noise free image) in (x, y) pixel, that can be

computed as:

2
OI (x, y) =

2
NI (x, y) - n

2
 (2)

Where
2

NI (x, y) is the local variance associated with

the noisy input pixel image. Basically, this algorithm

adapts the variance of the Gaussian filter
2

f (x, y) pixel-

by-pixel, in order to strongly reduce the noise in smoothed

image areas (i.e., low image local variance
2
OI (x, y)), and

to reduce the distortion in areas with strong edges (i.e., high
2
OI (x, y)). In other words,

2
f (x, y) is increased in the

first case and decreased in the second one.
2
f(x, y) can

range from values near 0 to 1.5.

AIDI includes three main modules (Fig.1): the Local

Variance Estimator (LVE), the Noise Variance Estimator

(NVE) and the Adaptive Gaussian Filter.

First, the input pixels feed the NVE and, in parallel, they

are stored into an external memory through a 32-bit

interface.

The NVE, exploiting the algorithm presented in,

computes the Gaussian noise variance (i.e.,
2
n) affecting

the input image. The selected algorithm involves highly

parallelizable operations.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), Volume 5, Special Issue 2, May 2015)

International Conference on Advances in Computer and Communication Engineering (ACCE-2015)

Conference Organized by Vemana Institute of Technology, Bangalore, INDIA. Page 33

Figure 1: AIDI Internal architecture

It first requires to extract the strongest edges (or

features) of the input image exploiting the Sobel features

extractor. This task is performed using two 2D

convolutions between the input image and the Sobel

kernels (Eq. (3)).

Where I(x; y) is the pixel intensity in the (x, y) position

of the input image, and G is the edge map associated with

the input image. The strongest edges are then extracted by

selecting the highest 10% values inside G. example (as

shown in Fig.2)

 -1 -2 -1

 Gx = I (x, y) * 0 0 0
 1 2 1 ,

 -1 0 1

 Gy = I (x, y) * -2 0 2

 1 0 1

 G = Gx + Gy (3)

Figure 2: Detect edges using the Sobel method

Finally,
2
n can be computed as:

 σ
2

n= (4)

Where N is the 3x3 Laplacian kernel and C is a constant

defined as:

 (5)

Where W and H are the width and height of the input

image, respectively (in our architecture W = H = 1024).

Fast Method for Image Noise Estimation Using laplacian

operator

Laplacian Operator: We assume that the image is

corrupted by additive, white Gaussian noise with unknown

deviation n, and the model is given by:

I n (x, y I (x, y) n(x, y) (6)

Where x and y are the vertical and horizontal

coordinates of a pixel, In (x, y), I(x, y) and n(x, y) are the

noisy image, the original image and the additive Gaussian

noise respectively. Our goal is to estimate the standard

deviation σn of the noise from the noisy image.

Figure 3: Block diagram of “fast estimation”

The first step of the “Fast Estimation” method is to

suppress the image structures by the following Laplacian

operator:

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), Volume 5, Special Issue 2, May 2015)

International Conference on Advances in Computer and Communication Engineering (ACCE-2015)

Conference Organized by Vemana Institute of Technology, Bangalore, INDIA. Page 34

 1 -2 1

N = -2 4 -2 (7)

 1 -2 1

Then the standard deviation of the noise can be using eq.

(4)

When the computation of
2
n is completed, the overall

image is read out from the external memory and provided

in input to the LVE. The LVE computes the local variance

associated with each input pixel
2

NI (x, y). The local

variance of a pixel is defined as the variance calculated on

an image window (i.e. patch) centered around the

considered pixel (As shown in Fig. 4).

To perform this task, LVE applies the following

formula:

σ
2

NI(x,y)=S (8)

Where T is a constant equal to the number of elements in

the patch (a 11x11 pixels patch has been selected in our

architecture to ensure an accurate local variance

estimation), and S is equal to:

 S (9)

Since LVE has a pipelined internal architecture, at each

clock cycle it provides in output the
2
NI (x, y) and the

related pixel values composing the patch.

Figure 4: Pixel neighboring comparison

The Adaptive Gaussian Filter receives the
2
n

computed by NVE, and the outputs of the LVE. The filter

computes equations (1) and (2), in order to find the best

filter variance value (i.e.,
2
f (x, y)). After this

computation, this module applies the Gaussian smoothing

on the current received pixel.

The Gaussian filtering operation is performed by means

of a 2D-convolution on the input image with a 11x11 pixels

Gaussian kernel. The selected filter size allows to

accurately represent the Gaussian function with variance

values in the selected range (i.e., (0, 1.5)), as described

before. The values of the Gaussian kernel are adapted

pixel-by-pixel, depending on the computed
2
f (x, y), as

described in Subsection IV-C. In the following subsections

all the hardware implementation details of the AIDI

modules are deeply analyzed.

A. Noise Variance Estimator

The NVE module receives the input image through a 32-

bit interface (4 pixels are received at each clock cycle), and

it provides in output the estimated white Gaussian noise

variance
2
n affecting the image. The internal architecture

of NVE is shown in Fig. 5.

Figure 5: NVE Internal architecture

Since NVE must perform operations involving patches

(see Sec. IV), in order to speed up the computation, the

input pixels are stored exploiting a circular buffering

approach, implemented by the Smart Image Window

Buffer (SIWB) of Fig. 6.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), Volume 5, Special Issue 2, May 2015)

International Conference on Advances in Computer and Communication Engineering (ACCE-2015)

Conference Organized by Vemana Institute of Technology, Bangalore, INDIA. Page 35

Figure 6: SIWB Internal architecture

Input pixels, grouped in 32-bit packets, are sent to the

IWB writer that serializes the pixels using a FIFO, and

stores them inside the Image Window Buffer (IWB in Fig.

3). IWB is composed of 3 FPGA internal Block-RAMs

(BRAMs), each devoted to store an entire image row. 3

BRAMs are used since pixels from 3 different rows of the

image are needed at the same time, to perform the required

operations on a 3x3 pixels image patch.

Initially, the IWB writer fills each BRAM, starting from

the top one to the bottom one.

During a convolution operation image borders are not

processed [8], thus, when all BRAMs are filled, the pixels

necessary to process the second row of the image are

available to be read-out. While the second row is being

processed, pixels associated with the fourth row of the

image are received. They overwrite the content of the

BRAM that contains the oldest row (i.e., the first row in

this case).

In general, while the i-th image row is being processed,

pixels of the (i+2)-th image row are being received. The

IWB writer stores received pixels in the BRAM that

contains the ones associated to the (i-1)-th image row (i.e.,

IWB works as a circular buffer). This buffering approach

leads to two advantages: (i) when the 3 BRAMs are filled,

all required pixels to compute a row are available, allowing

a pixel every clock cycle to be processed; (ii) it completely

avoids any access to the external memory, because when an

image row in the buffer is overwritten by a new one, the

data of the replaced row are not needed for the following

computations.

The pixels of the image, associated with the current 3x3

patch, are read-out from the IWB by the IWB reader. IWB

reader is a Finite-State-Machine (FSM) charged of reading

out the pixels from the IWB and providing them to the 3x3

Register window in the right order.

Basically, when all pixels needed to process the i-th

image row (i.e., pixels from the i-1th row to i+1th row) are

stored in the IWB, the IWB reader can start to read a pixel

from each BRAM of the buffer. Read pixels are loaded into

the first column of the 3x3

8-bit FFs Register Window. Each row of the 3x3

Register windows is a shift register. Thus, at the next clock

cycle, when another column of 3 pixels is loaded, the

previous column is shifted to the next position. Whenever

the 3x3 Register windows is filled with all the pixels of a

patch, they are provided in output of the SIWB. It is

important to highlight that the IWB writer loads the image

rows in the IWB as in a circular buffer. Thus, the image

rows are stored in the IWB in an out-of-order manner

(w.r.t. the original image).

Consequently, IWB reader must rearrange the position

of the pixels in order to store them in the 3x3 Register

windows with the same order as in the original image. In

this way, at each clock cycle, the pixels of the current patch

are provided in output of the SIWB in the right order.

The outputs of SIWB feed the two main modules of

LVE: the Sobel Extractor (SE in Fig. 5), and the Laplacian.

Basically, SE extracts the features from the input image

and asserts its output flag only if the currently processed

pixel is one of the 10% strongest features in the

image.First, SE computes the operations reported in Eq.

(3). The Gx and Gy modules receive in input the pixels of

the current 3x3 patch and compute the 2D convolutions

between the input pixels and the Sobel kernels. These two

modules are internally implemented as a MUL/ADD tree

composed of 6 multipliers (only 6 values are different from

zero in Sobel kernels) and 3 adder stages, for a total

amount of 5 adders. Moreover, since the Sobel kernel

factors can only be equal to 1, -1, 2 or -2, in order to reduce

the area occupation, the multipliers are replaced by a wire,

a sign inverter, a shifter, and a sign inverter & shifter,

respectively.

The outputs of the Gx and Gy are then added together,

through a 16 bit adder, to find the G value (see Eq. (3)).

The computed G is compared with a threshold in order to

set the SE output only if the current pixel is one of the 10%

strongest features in the image.

The threshold value cannot be determined at design time

since it strongly depends on the camera and environment

conditions.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), Volume 5, Special Issue 2, May 2015)

International Conference on Advances in Computer and Communication Engineering (ACCE-2015)

Conference Organized by Vemana Institute of Technology, Bangalore, INDIA. Page 36

Thus, the TH adpt module (see Fig. 5) is in charge of

calculating the initial threshold value and adapting it frame

by frame, by simply applying Algorithm1.

Where N target features represents the strongest features

in the input image (i.e., the 10% of the complete image).

Gap is the difference between the current number of

extracted Sobel features (N Sobel features) and N target

features. If the value of Gap is less than -3000 or more

than 3000, the current value of the threshold (i.e.,

Current_TH) is incremented or decremented (depending on

its value) by one Offset. The new calculated value for the

threshold (i.e., New_TH) represents the threshold to be

provided in input to the comparator for the next input

image.

Since at high frame rates the image conditions between

two consecutive frames are approximately the same, the

threshold value calculated from the previous frame can be

applied to the current processed frame. This task is

performed for every input frame, in order to maintain the

number of extracted features around N target features.

Obviously, at startup the Current TH is initialized to a low

value, and experiments using a MATLAB implementation

of the NVE, applied on the Affine Covariant regions

Datasets [9], have shown that TH adpt need a maximum of

8 frames to reach a stable threshold value.

In parallel to the SE operations, the Laplacian module

computes the convolution between the input image and the

3x3 Laplacian Kernel (see Sec. III) This operation is

performed adopting the same approach used in the Gx and

Gy modules.

Although, in this case the MUL/ADD tree is composed

of 9 multipliers (all Laplacian Kernel factors are different

from zero) and 4 adder stages, for a total amount of 8

adders.

The Laplacian output is provided in input to an

accumulator (acc in Fig. 5). This accumulator is enabled

only when SE provides in output a zero, in other words

only when the current processed pixel is not one of the 10%

strongest features. In this way, when the complete image

has been received acc contains the value of the sum in Eq.

(4).

The following two multipliers conclude the computation

of Eq. (4). To ensure a minimal error, the C constant needs

to be represented in the 0.25 fixed-point formats and, for

the same reason, the following multipliers maintain the

same number of bits for the fractional part. The estimated

noise variance in output is then truncated to 12.25 fixed-

point formats. Thus, the NVE is able to estimate Gaussian

noise variance values up to 4000.

Finally, to improve the timing performances of the NVE

module, pipeline stages have been inserted in the

MUL/ADD trees and between the two output multipliers.

B. Local Variance Estimator

The LVE module receives in input the pixels read from

the external memory, and it provides in output
2
NI (x, y),

computed exploiting Eq. (8). The internal parallel

architecture of LVE is shown in Fig. 7.

It is composed of three main blocks: the SIWB, the

Mean2 and the S-comp. Since both Mean
2
 and S-comp

perform operations involving patches, the input pixels are

stored exploiting the same buffering approach adopted in

the NVE module (i.e. SIWB explained in Sec. IV-A). The

only difference concerns the IWB, which is composed of

11 BRAMs, because the LVE operations involve 11x11

pixels patches, as discussed in Sec. III.

The SIWB output pixels are provided in input to the

Mean
2
 and the S-comp modules. Moreover, the SIWB

output pixels are also provided in output of LVE.

Mean
2
 computes the second term of Eq. (9). The

received pixels are sent to the ADD tree that computes the

sum by means of a balanced tree composed of 7 adder

stages, for a total amount of 120 adders. Finally, the output

of the tree is sent to the two following multipliers to

complete the computation of the second term of Eq. (9). To

ensure a high precision, the value of the 1/T constant and of

the two multiplier outputs are represented in fixed-point

format, with 15 bit for the fractional part.In parallel to the

operations performed by Mean
2
, S-comp computes the S

variable (see Eq. 9)).

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), Volume 5, Special Issue 2, May 2015)

International Conference on Advances in Computer and Communication Engineering (ACCE-2015)

Conference Organized by Vemana Institute of Technology, Bangalore, INDIA. Page 37

Figure 7: LVE Internal architecture

The outputs of SIWB are provided in input to the

MUL/ADD Tree. This tree is composed of a multiplier

stage (i.e., 121 8x8-bit multipliers), that computes the

square of the pixels in the current patch, and 7 adder stages

(i.e., 120 adders), that compute the sum in Eq. (8). In order

to obtain the S value, the output of the tree is multiplied by

the 1/T constant.

Finally, the local variance
2

NI (x, y) is computed as

the difference between the output of the S-comp module

and the one of the Mean
2
 module, resorting to a 31-bit

subtractor. As shown in Fig. 7, in order to reduce the area

occupation, the data parallelism of each arithmetic

component (i.e., multiplier or subtractor) has been

truncated to a fixed format able to represent the maximum

achievable value. The maximum values obtainable during

the computation has been defined exploiting an exhaustive

validation campaign using a MATLAB LVE

implementation, applied on the Affine Covariant Regions

Datasets.

Moreover, several pipeline stages have been inserted to

improve the timing performances of the LVE module. For

this reason, since
2

NI (x, y) must be provided in output

with the associated patch, the SIWB pixels are delayed in

order to synchronize the LVE outputs.

B. Adaptive Gaussian Filter

Gaussian Filter receives the
2
n, the

2
NI (x, y), and

the pixels in output from the SIWB of the LVE (see Sec.

III-B), and it outputs a filtered pixel each clock cycle.

The internal architecture of this module is summarized

with Fig. 8.

The Adaptive Gaussian Filter is composed of three main

modules: the Filter Variance Estimator (FVE), the Kernel

Factors Selector (KFS), and the Gaussian Filter. FVE

computes
2

f by applying Eq. (1). Thanks to a test

campaign using a MATLAB implementation of the

Adaptive Gaussian Filter, applied on the Affine Covariant

Regions Datasets, it is possible to understand that Eq. (1)

can be modelled exploiting Algorithm 2.

The selected model allows a very efficient hardware

implementation of the selection condition, by simply

adopting a shifter and a comparator (see Fig. 8). Then,
2

f

(x, y) is computed using a pipelined divider and a

multiplier, and it is provided in input to KFS.

This module aims at defining the Gaussian kernel factors

associated with the current
2

f (x, y). These values cannot

be computed in real-time, because the associated formula

[8] is very complex and time consuming, so they are

precomputed and stored inside the hardware.

Figure 8: Adaptive Gaussian Internal architecture

Since each value of
2

f (x, y) (represented using 31 bit)

has a different associated kernel of 121 factors (i.e., the size

of the kernel used to perform the filtering task is 11x11

pixels), a huge amount of data should be stored (2
31

. 121

kernel factors). In order to reduce the required memory

resources, in the proposed hardware implementation, the

range of
2

f (x, y) (i.e. (0, 1.5], see Sec. III) has been

discretized adopting a resolution of 0.1.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), Volume 5, Special Issue 2, May 2015)

International Conference on Advances in Computer and Communication Engineering (ACCE-2015)

Conference Organized by Vemana Institute of Technology, Bangalore, INDIA. Page 38

In this way, the number of sets of 121 Gaussian kernel

factors has been limited to 14. Moreover, the required

storage capability has been limited exploiting the symmetry

of Gaussian kernel, also. Since Gaussian kernels are

circularly symmetric matrices, many factors inside them

are equal to each others. Fig. 9 shows an example of a 5x5

Gaussian kernel structure, in which the kernel factors to be

stored have been highlighted.

Figure 9: Example of a 5 x 5 Gaussian Kernel Structure

Since in a 11x11 Gaussian kernel the number of distinct

kernel factors is equal to 21, in the proposed hardware

architecture the internally stored data for each
2

f (x, y)

has been limited to this value.

For these reasons, KFS has been implemented has a

cluster of 14 21-input multiplexers, in which each

multiplexer is driven by the same selection signal, whose

value is defined depending on the current
2

f (x, y). In this

way, the cluster of multiplexers is able to provide in output

the 21 factors useful to represent the Gaussian kernel

associated with the current
2

f (x, y). Finally, the

multiplexer outputs are duplicated in order to reconstruct

the complete set of 121 kernel factors for a given
2

f (x, y).

The reassembled set of kernel factors are then provided

in input to the the Gaussian Filter together with the input

pixels from the SIWB, that are delayed to be synchronized

with the kernel factors. Then, Gaussian Filter computes the

2D convolution between the input pixel patch (i.e., Pixels

from SIWB in Fig. 6) by means of a MUL/ADD tree

composed of a multiplier stage (i.e., 121 multipliers) and 7

adder stages (i.e., 120 adders).

IV. EXPERIMENTAL RESULTS

To evaluate the hardware resources usage and the timing

performances, the proposed architecture has been

synthesized, resorting to Xilinx ISE Design Suite 14.4, on a

Xilinx Virtex 6 VLX240 FPGA device. Post-place and

route simulations have been done with Modelsim SE 10.0c.

Table I shows the resources utilization and the maximum

operating frequency of each module composing AIDI.

To compare our architecture with the FPGA-based

architectures for noise estimation and static Gaussian

filtering presented, AIDI has been also synthesized on a

Virtex II FPGA.

Concerning the NVE module, it uses 3,202 LUTs and 3

BRAMs, while the real-time noise estimator presented uses

4,608 LUTs, 72 BRAMs and 24 DSP elements.

The performances achieved by AIDI have been also

compared with the architecture presented in [6]. Regarding

the area occupation on a Virtex II FPGA device, the

proposed architecture uses 37,695 LUTs and 24 BRAMs,

whereas the FPGA-based static Gaussian filter presented in

[6] uses 22,464 LUTs, 39 BRAMs and 32 DSP elements.

The higher logic resource occupation (i.e., LUTs) of the

proposed architecture is due to two main aspects. The

former concerns the kernel used to perform the filtering

task, that in AIDI is 11x11 while in [6] is 7x7 (i.e., the 7x7

kernel size does not provide high filtering performance for

high level of noise). The latter regards the adaptivity

provided by AIDI that is not supported by [6]. Moreover,

AIDI provides better timing performance than [6].

In order to evaluate the improvements provided by AIDI

w.r.t. a static Gaussian filtering approach, an evaluation

campaign has been performed on the image dataset

reported in Fig.7.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), Volume 5, Special Issue 2, May 2015)

International Conference on Advances in Computer and Communication Engineering (ACCE-2015)

Conference Organized by Vemana Institute of Technology, Bangalore, INDIA. Page 39

On these images, different levels of white Gaussian

noise have been injected, spanning from a noise variance of

100 to 4,000, exploiting the imnoise function provided by

the MATLAB Image Processing Toolbox. Fig. 8 shows

some examples of the injected noise on an image.

The benefits provided by the adaptivity have been

quantified computing the Mean Square Error (MSE):

MSE = ∑ (I(x, y) – IF(x, y))
2

 (11)

Where H and W are the height and the width of the input

image, and I(x; y) and IF (x; y) are the pixel intensities in

the (x, y) position of the noise free and the filtered images,

respectively.

Figure 10: Image dataset exploited for the evaluation campaign

Each noisy image has been filtered using:

 (i) A static 11x11 Gaussian filter (with a
2

f equal to

k (see Sec. IV).

(ii) A MATLAB model of AIDI (Adaptive (SW)),

involving the double precision.

(iii) The AIDI hardware implementation (Adaptive (HW)),

which involves fixed-point representation. The graphs in

Fig. 12 plot the trends of the MSEs, computed for each

image composing the adopted image dataset (see Fig. 11),

versus the variance of the injected noise. Fig. 12 highlights

two main aspects:

1) The error introduced by the fixed-point

representation w.r.t. the double precision

implementation can be neglected (Adaptive (SW) vs.

Adaptive (HW) in Fig. 12)

2) The MSE associated with the output of AIDI is

always lower than the one affecting the output of a

static Gaussian filter (Adaptive (HW) vs. Static in Fig.

12). Moreover, the benefits increase for noise levels

with
2

f ≤ 1; 000, while for higher noise levels, the

improvement decreases because the local variance of

the image is greatly influenced by the noise, and so it

cannot be accurately computed.

Finally, to prove the effectiveness of the proposed FPGA

based adaptive filter in preserving edges w. r. t. a standard

static Gaussian filtering approach, the images filtered with

both methods have been provided in input to a Laplacian

edge detector. Fig. 10a shows an example of image affected

by white Gaussian noise with
2

n = 1,500, while Fig. 12b,

Fig. 12c, and Fig. 12d show the edges extracted from the

non-filtered image, the filtered image with a static Gaussian

filter, and the image filtered with AIDI, respectively.

Despite the high injected noise, AIDI is able to filter the

image without smoothing edges, improving the

performance of the edge detector. Instead, the static

Gaussian filter outputs a smoothed image, in which edges

are weakened and difficult to be detected.

Figure 11: Example of injected level of noise

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), Volume 5, Special Issue 2, May 2015)

International Conference on Advances in Computer and Communication Engineering (ACCE-2015)

Conference Organized by Vemana Institute of Technology, Bangalore, INDIA. Page 40

V. CONCLUSION

This paper presented AIDI a high performance FPGA

based image denoiser for real-time applications. This IP

core enables to self adapt the filtering parameters to the

level of noise in the input image pixel by pixel, resulting in

a more accurate filtered image.

The experimental results show a strong improvement of

the quality of the filtered image w.r.t. the one obtained

from a static Gaussian filter, especially for noise level with
2

n ≤ 1; 000. These enhancements allow to increase the

precision of all the modules, composing an image

processing chain, that receive in input the filtered image

(e.g., edge detector).

Figure 12: Laplacian edge extraction – (a) Noisy image in input (σ2

n =

1500) (b) Edge extracted from noisy image (c) Edge extracted From

the image filtered by a static 11 x 11 filter (d) Edge extracted from

image filtered by AIDI

REFERENCES

[1] S.-C. Tai and S.-M. Yang, “A fast method for image noise

estimation using laplacian operator and adaptive edge detection,” in
Proc. Of 3rd international Symposium on Communications, control

and Signal Processing (ISCCSP), pp. 1077 – 1081, 2008.

[2] F. Russo, “A method for estimation and filtering of gaussian noise in
images,” IEEE Transactions on Instrumentation and Measurement,

vol. 52, no. 4, pp. 1148 – 1154, 2003.

[3] J. Tian and L. Chen, “Image noise estimation using a variation-

adaptive evolutionary approach,” IEEE Signal Processing Letters,

vol. 19, no. 7, pp. 395 – 398, 2012.

[4] G. Deng and L. Cahill, “An adaptive gaussian filter for noise

reduction and edge detection,” in Proc. of Nuclear Science

Symposium and Medical Imaging Conference, pp. 1615 – 1619
vol.3, 1993.

[5] Z. Vasicek and L. Sekanina, “An area-efficient alternative to
adaptive median filtering in FPGAs,” in Proc. of International

Conference on Field Programmable Logic and Applications (FPL),

pp. 216 – 221, 2007.

[6] Joginipelly, A. Varela, D. Charalampidis, R. Schott, and Z.

Fitzsimmons, “Efficient FPGA implementation of steerable

Gaussian smoothers,” in Proc. of 44th Southeastern Symposium on
System Theory (SSST), pp. 78 – 82, 2012.

[7] T. Q. Vinh, J. hyun Park, Y.-C. Kim, and S. H. Hong, “FPGA
implementation of real-time edge-preserving filter for video noise

reduction,” in Proc. of International Conference on Computer and

Electrical Engineering (ICCEE), pp. 611 – 614, 2008.

[8] R. Gonz´alez and R. Woods, Digital image processing 3rd edition.

Prentice Hall, 2007.

[9] “University of Oxford - Affine Covariant Regions Dataset.”

www.robots. ox.ac.uk/_vgg/data/data-aff.html.

[10] F.-X. Lapalme, A. Amer, and C. Wang, “FPGA architecture for

realtime video noise estimation,” in Proc. of International

Conference on Image Processing, pp. 3257 – 3260, 2006.

