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Abstract—The presence of noise in images can 

significantly impact the performances of computer 

vision algorithms and digital image processing. Thus, 

noise should be removed to improve the robustness of 

the entire process. Denoising or noise reduction is one of 

the most essential processes for digital image 

processing. The main goal of denoising is how to remove 

the noise while keeping the important features of the 

image. The denoising methods should not alter the 

original image, most denoising methods degrade or 

remove the fine details. This paper presents an 

Adaptive Image Denoising IP-core (AIDI) for real time 

applications. Here core first estimates the level of noise 

in the input image, then applies an adaptive Gaussian 

smoothing filter to remove the estimated noise. The 

filtering parameters are computed on-the-fly, adapting 

them to the level of noise in the image and pixel by pixel 

to preserve image information (e.g., edges or corners). 

In this context, hardware acceleration is crucial and 

Field Programmable Gate Arrays (FPGAs) best fit the 

growing demand of computational capabilities. The 

architecture uses FPGA, it shows the improvements 

with respect to a standard static filtering approach. 

Index Terms－ Gaussian noise, noise estimation, 

Laplacian operator, noise reduction, edge detection. 

Adaptive Gaussian filtering, Gaussian noise, denoising. 

I. INTRODUCTION 

Nowadays, computer vision is one of the most evolving 

areas of Information Technology (IT). Image processing is 

widely used in several application fields, such as aerospace, 

medical, or automotive.  

 

In every computer vision application, one or more 

images are taken from a camera, and processed, in order to 

extract information used for edge detection, features 

identification, or  image registration. 

Image processing is widely used in many fields, such as 

medical imaging, scanning techniques, printing skills, 

license plate recognition, face recognition, and so on. 

Unfortunately, the technology provided by modern Charge 

Coupled Device (CCD) sensors suffers from noise. In a 

CCD camera there are many potential sources of noise, 

such as Shot Noise, Dark current, Read Noise and 

Quantization noise are some of examples. CCD 

manufacturers typically Combine these on-chip noise 

sources, and express them in terms of a number of electrons 

Root Mean Square (RMS). However, in image the level of 

noise does not depend on the adopted sensor only but also 

depends on the environmental condition as well. Noise 

estimation and removal are thus necessary to improve the 

effectiveness of image processing algorithms.  

To estimate how an image is affected by noise, a well 

characterized noise model must be defined. Since noise 

sources are random in nature, their values must be handled 

as random variables, described by probabilistic functions. 

In fact, Dark Current, proportional to the integration time 

and temperature, is modeled as a Gaussian distribution, 

Shot and Read Noise, caused by on-chip output amplifiers, 

are modeled as Poisson distributions, and, detector 

malfunction or hot pixels are modeled by an impulsive 

distribution.In most cases, all Gaussian and Poisson 

distributed noises are combined, approximating the image 

noise with an equivalent additive zero-mean white 

Gaussian noise distribution, characterized by a variance 

n
2
. 
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While the impulsive noise can be removed in a relatively 

simple way, Gaussian noise removal is a non trivial task, 

since, to be more effective, the filter must be adapted to the 

actual level of noise in the image. Noise estimation is 

therefore a fundamental task. Nonetheless, in modern real-

time systems, a software implementation of these complex 

algorithms cannot be used, since it does not meet real-time 

constraints. In this context, FPGAs are a good choice to 

hardware accelerate the noise estimation and removal tasks. 

This enables subsequent image processing algorithms to 

fully exploit the remaining timing budget. 

This paper presents AIDI: an Adaptive Image Denoising 

FPGA-based IP-core for real-time applications. The core 

first estimates the level of noise in the input image. It then 

applies an adaptive Gaussian smoothing filter to remove 

the estimated Gaussian noise. The filtering parameters are 

computed on the-fly, adapting them to the level of noise of 

the current image. Furthermore, the filter uses local image 

information to discriminate whether a pixel belongs to an 

edge in the image or not, preserving it for subsequent edge 

detection or image registration algorithms. An FPGA-based 

implementation has been targeted, since FPGAs are 

increasingly used in real-time systems as hardware 

accelerators, even in mission-critical applications, such as 

aerospace field. The paper is organized as follows: Section 

II gives an overview on noise estimation and removal 

approaches, and their existing hardware implementations. 

Section III presents the hardware architecture of the 

proposed IP-core, while Section IV shows the experimental 

results. Finally, in Section V, some conclusions are drawn. 

II. RELATED WORK 

Noise estimation methods, targeting additive white 

Gaussian noise, can be classified in two categories: filter-

based and block-based. With the former method, the noisy 

image is filtered by a low pass filter to suppress image 

structures (e.g., edges), and then the noise variance is 

computed based on the difference between the filtered and 

the noisy image (called difference image) [1]. With the 

latter method, the image is split into cells, and the noise 

variance is computed identifying the most homogeneous 

cells [2][3].  

Proved that filter-based methods work better than block 

based methods at high noise levels, but they are complex 

and require high computational load.  

In addition, filter-based methods assume the difference 

image as the noise affecting the input image, but this 

assumption is not true for images with several structures or 

details. 

To tackle this problem, [1] estimates noise by combining 

a simple edge detector and a low-pass filter. The proposed 

algorithm has good performances even with high detailed 

images at different level of noise, and it requires only 

simple mathematical operations (i.e., convolutions and 

averaging operations). 

Denoising methods can be based on linear or on non-

linear models. On the one hand, median and Gaussian 

filters are commonly used to remove noise, offering a good 

trade-off between complexity and effectiveness in 

smoothing out noise. These methods work well in the flat 

regions of images, but they do not well preserve the image 

edges, that appear smoothed. On the other hand, denoising 

methods based on non-linear models (e.g., wavelets-based 

methods) can handle edges in a better way, but are more 

complex, and often not applicable in real-time image 

processing for high resolution images. 

In [4] the authors propose an adaptive Gaussian filter 

which tries to limit the edge smoothing problem of standard 

Gaussian filtering methods. A large filter variance is 

effective in smoothing out noise, but, at the same time, it 

distorts those parts of the image where there are abrupt 

changes in pixel intensity. This can lead to edge position 

displacement, vanishing of edges, or phantom edges (i.e., 

artifacts in the image). 

To address this problem, [4] adapts the filter variance to 

the local characteristics of the input image. It makes use of 

the local variance of the image, and the estimated Gaussian 

noise in the image. It has been proven that this adaptive 

filtering approach succeeds in preserving edges and 

features of an image, even in presence of noise, better than 

a static filtering approach.  

Hardware implementations of denoising methods have 

been widely investigated. [5] Propose FPGA-based 

implementations of median filters. However, median 

filtering is strictly recommended for impulse noise removal 

(i.e., Salt and-Pepper noise), while it does not provide good 

results when the image is affected by Gaussian noise. An 

FPGA-based implementation of a Gaussian smoother has 

been proposed in[6], but its main drawback is the non-

adaptivity of the filter, which results in edge smoothing. [7] 

propose implementations of wavelet-based and bilateral 

filter image denoisers, respectively.  
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However, none of these works account for a noise 

estimation module to be included into the hardware 

architecture. In Cartesian Genetic Programming (CGP) 

image filters have been proposed. CGP-based filters are 

able to reduce the noise on the image while preserving 

edges. Moreover, they can be efficiently implemented on 

FPGAs requiring few hardware resources. However, since 

CGP filters are based on evolutionary algorithms, they 

require a lot of iterations to provide the filtered image, 

making them inappropriate for real time applications. 

Hardware implementations of noise estimators have not 

been deeply investigated by the research community. The 

proposed architecture wastes a lot of hardware and memory 

resources to perform sorting and logarithmic operations. 

Moreover a noise removal module is not included in the 

architecture. The presented paper introduces a 

comprehensive FPGA-based architecture, including noise 

estimation and noise removal in a single IP-core. It targets 

the estimation and removal of additive white Gaussian 

noise. The chosen adaptive Gaussian filtering approach 

ensures edge preserving capability, while the noise 

estimation algorithm is able to estimate the variance of 

Gaussian noise with high accuracy[1][4]. 

The proposed adaptive FPGA-based architecture ensures 

real time performances, even with 1024x1024 pixels grey-

scale images, with 8 bit-per-pixel resolution (bpp). 

Nonetheless, the proposed architecture uses few hardware 

resources, allowing to include, in the same device, 

additional image processing algorithms. 

III. AIDI ARCHITECTURE 

AIDI is a highly parallelized and pipelined FPGA-based 

IPcore that gets in input, through a 32-bit interface, a 

1024x1024 grey scale image (e.g., from a CCD camera) 

with 8 bpp and outputs a filtered pixel each clock cycle, 

through a 25 bit interface. Input pixels are received as a set 

of 32-bit packets (i.e., 4 pixels are received in a clock 

cycle), without any header or padding bit. 

In order to self-adapt the Gaussian filter to the current 

input image, AIDI applies the approach presented in [4].  

 

 

 

 

 

This approach can be mathematically formalized as 

follow: 

        (1) 
Where 

2
f (x, y)  is the variance of the Gaussian filter 

to be applied at the pixel of the input image in (x, y) 

position, 
2
n is the estimated white Gaussian noise 

variance of the input image, k is a constant equal to 1.5, 

and 
2

OI (x, y)  is the local variance of the image without 

noise (i.e., noise free image) in (x, y) pixel, that can be 

computed as: 

2
OI (x, y) =  

2
NI (x, y) - n

2
       (2) 

Where 
2

NI (x, y)  is the local variance associated with 

the noisy input pixel image. Basically, this algorithm 

adapts the variance of the Gaussian filter 
2

f (x, y) pixel-

by-pixel, in order to strongly reduce the noise in smoothed 

image areas (i.e., low image local variance 
2
OI (x, y)), and 

to reduce the distortion in areas with strong edges (i.e., high 
2
OI (x, y)). In other words, 

2
f (x, y) is increased in the 

first case and decreased in the second one. 
2
f(x, y) can 

range from values near 0 to 1.5. 

AIDI includes three main modules (Fig.1): the Local 

Variance Estimator (LVE), the Noise Variance Estimator 

(NVE) and the Adaptive Gaussian Filter. 

First, the input pixels feed the NVE and, in parallel, they 

are stored into an external memory through a 32-bit 

interface. 

The NVE, exploiting the algorithm presented in, 

computes the Gaussian noise variance (i.e., 
2
n) affecting 

the input image. The selected algorithm involves highly 

parallelizable operations. 
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Figure 1: AIDI Internal architecture 

It first requires to extract the strongest edges (or 

features) of the input image exploiting the Sobel features 

extractor. This task is performed using two 2D 

convolutions between the input image and the Sobel 

kernels (Eq. (3)). 

Where I(x; y) is the pixel intensity in the (x, y) position 

of the input image, and G is the edge map associated with 

the input image. The strongest edges are then extracted by 

selecting the highest 10% values inside G. example (as 

shown in Fig.2)   

                               -1    -2    -1 

    Gx = I (x, y) *      0     0      0   
                                1     2      1      , 

 

                               -1    0    1 

    Gy = I (x, y) *     -2    0    2 

                                1     0    1            

   G =     Gx      +    Gy     (3) 

 

Figure 2: Detect edges using the Sobel method 

 

 

 

Finally, 
2
n can be computed as: 

 σ
2

n=             (4) 

Where N is the 3x3 Laplacian kernel and C is a constant 

defined as: 

              (5) 

Where W and H are the width and height of the input 

image, respectively (in our architecture W = H = 1024). 

Fast Method for Image Noise Estimation Using laplacian 

operator 

Laplacian Operator: We assume that the image is 

corrupted by additive, white Gaussian noise with unknown 

deviation n, and the model is given by: 

I n (x, y I (x, y) n(x, y)                    (6) 

Where x and y are the vertical and horizontal 

coordinates of a pixel, In (x, y), I(x, y) and n(x, y) are the 

noisy image, the original image and the additive Gaussian 

noise respectively. Our goal is to estimate the standard 

deviation σn of the noise from the noisy image. 

 
Figure 3: Block diagram of “fast estimation” 

The first step of the “Fast Estimation” method is to 

suppress the image structures by the following Laplacian 

operator: 
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           1     -2   1 

N =    -2      4 -2                                              (7) 

           1     -2         1 

Then the standard deviation of the noise can be using eq. 

(4) 

When the computation of 
2
n is completed, the overall 

image is read out from the external memory and provided 

in input to the LVE. The LVE computes the local variance 

associated with each input pixel 
2

NI (x, y). The local 

variance of a pixel is defined as the variance calculated on 

an image window (i.e. patch) centered around the 

considered pixel (As shown in Fig. 4). 

To perform this task, LVE applies the following 

formula:                                                                                                        

σ
2

NI(x,y)=S           (8)  

Where T is a constant equal to the number of elements in 

the patch (a 11x11 pixels patch has been  selected in our 

architecture to ensure an accurate local variance 

estimation), and S is equal to: 

     S                          (9) 

Since LVE has a pipelined internal architecture, at each 

clock cycle it provides in output the 
2
NI (x, y) and the 

related pixel values composing the patch. 

 

Figure 4: Pixel neighboring comparison 

The Adaptive Gaussian Filter receives the 
2
n                   

computed by NVE, and the outputs of the LVE. The filter 

computes equations (1) and (2), in order to find the best 

filter variance value (i.e., 
2
f (x, y)). After this 

computation, this module applies the Gaussian smoothing 

on the current received pixel. 

The Gaussian filtering operation is performed by means 

of a 2D-convolution on the input image with a 11x11 pixels 

Gaussian kernel. The selected filter size allows to 

accurately represent the Gaussian function with variance 

values in the selected range (i.e., (0, 1.5)), as described 

before. The values of the Gaussian kernel are adapted 

pixel-by-pixel, depending on the computed 
2
f (x, y), as 

described in Subsection IV-C. In the following subsections 

all the hardware implementation details of the AIDI 

modules are deeply analyzed. 

A. Noise Variance Estimator 

The NVE module receives the input image through a 32-

bit interface (4 pixels are received at each clock cycle), and 

it provides in output the estimated white Gaussian noise 

variance 
2
n affecting the image. The internal architecture 

of NVE is shown in Fig. 5. 

 

Figure 5: NVE Internal architecture 

Since NVE must perform operations involving patches 

(see Sec. IV), in order to speed up the computation, the 

input pixels are stored exploiting a circular buffering 

approach, implemented by the Smart Image Window 

Buffer (SIWB) of Fig. 6. 
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Figure 6: SIWB Internal architecture 

Input pixels, grouped in 32-bit packets, are sent to the 

IWB writer that serializes the pixels using a FIFO, and 

stores them inside the Image Window Buffer (IWB in Fig. 

3). IWB is composed of 3 FPGA internal Block-RAMs 

(BRAMs), each devoted to store an entire image row. 3 

BRAMs are used since pixels from 3 different rows of the 

image are needed at the same time, to perform the required 

operations on a 3x3 pixels image patch. 

Initially, the IWB writer fills each BRAM, starting from 

the top one to the bottom one. 

During a convolution operation image borders are not 

processed [8], thus, when all BRAMs are filled, the pixels 

necessary to process the second row of the image are 

available to be read-out. While the second row is being 

processed, pixels associated with the fourth row of the 

image are received. They overwrite the content of the 

BRAM that contains the oldest row (i.e., the first row in 

this case). 

In general, while the i-th image row is being processed, 

pixels of the (i+2)-th image row are being received. The 

IWB writer stores received pixels in the BRAM that 

contains the ones associated to the (i-1)-th image row (i.e., 

IWB works as a circular buffer). This buffering approach 

leads to two advantages: (i) when the 3 BRAMs are filled, 

all required pixels to compute a row are available, allowing 

a pixel every clock cycle to be processed; (ii) it completely 

avoids any access to the external memory, because when an 

image row in the buffer is overwritten by a new one, the 

data of the replaced row are not needed for the following 

computations. 

The pixels of the image, associated with the current 3x3 

patch, are read-out from the IWB by the IWB reader. IWB 

reader is a Finite-State-Machine (FSM) charged of reading 

out the pixels from the IWB and providing them to the 3x3 

Register window in the right order.  

Basically, when all pixels needed to process the i-th 

image row (i.e., pixels from the i-1th row to i+1th row) are 

stored in the IWB, the IWB reader can start to read a pixel 

from each BRAM of the buffer. Read pixels are loaded into 

the first column of the 3x3 

8-bit FFs Register Window. Each row of the 3x3 

Register windows is a shift register. Thus, at the next clock 

cycle, when another column of 3 pixels is loaded, the 

previous column is shifted to the next position. Whenever 

the 3x3 Register windows is filled with all the pixels of a 

patch, they are provided in output of the SIWB. It is 

important to highlight that the IWB writer loads the image 

rows in the IWB as in a circular buffer. Thus, the image 

rows are stored in the IWB in an out-of-order manner 

(w.r.t. the original image). 

Consequently, IWB reader must rearrange the position 

of the pixels in order to store them in the 3x3 Register 

windows with the same order as in the original image. In 

this way, at each clock cycle, the pixels of the current patch 

are provided in output of the SIWB in the right order. 

The outputs of SIWB feed the two main modules of 

LVE: the Sobel Extractor (SE in Fig. 5), and the Laplacian. 

Basically, SE extracts the features from the input image 

and asserts its output flag only if the currently processed 

pixel is one of the 10% strongest features in the 

image.First, SE computes the operations reported in Eq. 

(3). The Gx and Gy modules receive in input the pixels of 

the current 3x3 patch and compute the 2D convolutions 

between the input pixels and the Sobel kernels. These two 

modules are internally implemented as a MUL/ADD tree 

composed of 6 multipliers (only 6 values are different from 

zero in Sobel kernels) and 3 adder stages, for a total 

amount of 5 adders. Moreover, since the Sobel kernel 

factors can only be equal to 1, -1, 2 or -2, in order to reduce 

the area occupation, the multipliers are replaced by a wire, 

a sign inverter, a shifter, and a sign inverter & shifter, 

respectively. 

The outputs of the Gx and Gy are then added together, 

through a 16 bit adder, to find the G value (see Eq. (3)). 

The computed G is compared with a threshold in order to 

set the SE output only if the current pixel is one of the 10% 

strongest features in the image. 

The threshold value cannot be determined at design time 

since it strongly depends on the camera and environment 

conditions.  
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Thus, the TH adpt module (see Fig. 5) is in charge of 

calculating the initial threshold value and adapting it frame 

by frame, by simply applying Algorithm1. 

Where N target features represents the strongest features 

in the input image (i.e., the 10% of the complete image). 

 

Gap is the difference between the current number of 

extracted Sobel features (N Sobel features) and N target 

features. If  the value of Gap is less than -3000 or more 

than 3000, the current value of the threshold (i.e., 

Current_TH) is incremented or decremented (depending on 

its value) by one Offset. The new calculated value for the 

threshold (i.e., New_TH) represents the threshold to be 

provided in input to the comparator for the next input 

image. 

Since at high frame rates the image conditions between 

two consecutive frames are approximately the same, the 

threshold value calculated from the previous frame can be 

applied to the current processed frame. This task is 

performed for every input frame, in order to maintain the 

number of extracted features around N target features. 

Obviously, at startup the Current TH is initialized to a low 

value, and experiments using a MATLAB implementation 

of the NVE, applied on the Affine Covariant regions 

Datasets [9], have shown that TH adpt need a maximum of 

8 frames to reach a stable threshold value. 

In parallel to the SE operations, the Laplacian module 

computes the convolution between the input image and the 

3x3 Laplacian Kernel (see Sec. III) This operation is 

performed adopting the same approach used in the Gx and 

Gy modules. 

Although, in this case the MUL/ADD tree is composed 

of 9 multipliers (all Laplacian Kernel factors are different 

from zero) and 4 adder stages, for a total amount of 8 

adders. 

 

The Laplacian output is provided in input to an 

accumulator (acc in Fig. 5). This accumulator is enabled 

only when SE provides in output a zero, in other words 

only when the current processed pixel is not one of the 10% 

strongest features. In this way, when the complete image 

has been received acc contains the value of the sum in Eq. 

(4). 

The following two multipliers conclude the computation 

of Eq. (4). To ensure a minimal error, the C constant needs 

to be represented in the 0.25 fixed-point formats and, for 

the same reason, the following multipliers maintain the 

same number of bits for the fractional part. The estimated 

noise variance in output is then truncated to 12.25 fixed-

point formats. Thus, the NVE is able to estimate Gaussian 

noise variance values up to 4000. 

Finally, to improve the timing performances of the NVE 

module, pipeline stages have been inserted in the 

MUL/ADD trees and between the two output multipliers. 

B. Local Variance Estimator 

The LVE module receives in input the pixels read from 

the external memory, and it provides in output 
2
NI (x, y), 

computed exploiting Eq. (8). The internal parallel 

architecture of LVE is shown in Fig. 7. 

It is composed of three main blocks: the SIWB, the 

Mean2 and the S-comp. Since both Mean
2
 and S-comp 

perform operations involving patches, the input pixels are 

stored exploiting the same buffering approach adopted in 

the NVE module (i.e. SIWB explained in Sec. IV-A). The 

only difference concerns the IWB, which is composed of 

11 BRAMs, because the LVE operations involve 11x11 

pixels patches, as discussed in Sec. III.  

The SIWB output pixels are provided in input to the 

Mean
2
 and the S-comp modules. Moreover, the SIWB 

output pixels are also provided in output of LVE. 

Mean
2
 computes the second term of Eq. (9). The 

received pixels are sent to the ADD tree that computes the 

sum by means of a balanced tree composed of 7 adder 

stages, for a total amount of 120 adders. Finally, the output 

of the tree is sent to the two following multipliers to 

complete the computation of the second term of Eq. (9). To 

ensure a high precision, the value of the 1/T constant and of 

the two multiplier outputs are represented in fixed-point 

format, with 15 bit for the fractional part.In parallel to the 

operations performed by Mean
2
, S-comp computes the S 

variable (see Eq. 9)). 
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Figure 7: LVE Internal architecture 

The outputs of SIWB are provided in input to the 

MUL/ADD Tree. This tree is composed of a multiplier 

stage (i.e., 121 8x8-bit multipliers), that computes the 

square of the pixels in the current patch, and 7 adder stages 

(i.e., 120 adders), that compute the sum in Eq. (8). In order 

to obtain the S value, the output of the tree is multiplied by 

the 1/T constant. 

Finally, the local variance 
2

NI (x, y) is computed as 

the difference between the output of the S-comp module 

and the one of the Mean
2
 module, resorting to a 31-bit 

subtractor. As shown in Fig. 7, in order to reduce the area 

occupation, the data parallelism of each arithmetic 

component (i.e., multiplier or subtractor) has been 

truncated to a fixed format able to represent the maximum 

achievable value. The maximum values obtainable during 

the computation has been defined exploiting an exhaustive 

validation campaign using a MATLAB LVE 

implementation, applied on the Affine Covariant Regions 

Datasets.  

Moreover, several pipeline stages have been inserted to 

improve the timing performances of the LVE module. For 

this reason, since 
2

NI (x, y) must be provided in output 

with the associated patch, the SIWB pixels are delayed in 

order to synchronize the LVE outputs. 

B. Adaptive Gaussian Filter 

Gaussian Filter receives the 
2
n, the 

2
NI (x, y), and 

the pixels in output from the SIWB of the LVE (see Sec. 

III-B), and it outputs a filtered pixel each clock cycle.  

The internal architecture of this module is summarized 

with Fig. 8. 

The Adaptive Gaussian Filter is composed of three main 

modules: the Filter Variance Estimator (FVE), the Kernel 

Factors Selector (KFS), and the Gaussian Filter. FVE 

computes 
2

f by applying Eq. (1). Thanks to a test 

campaign using a MATLAB implementation of the 

Adaptive Gaussian Filter, applied on the Affine Covariant 

Regions Datasets, it is possible to understand that Eq. (1) 

can be modelled exploiting Algorithm 2. 

The selected model allows a very efficient hardware 

implementation of the selection condition, by simply 

adopting a shifter and a comparator (see Fig. 8). Then, 
2

f 

(x, y) is computed using a pipelined divider and a 

multiplier, and it is provided in input to KFS. 

This module aims at defining the Gaussian kernel factors 

associated with the current 
2

f (x, y). These values cannot 

be computed in real-time, because the associated formula 

[8] is very complex and time consuming, so they are 

precomputed and stored inside the hardware. 

 

Figure 8: Adaptive Gaussian Internal architecture 

Since each value of 
2

f (x, y) (represented using 31 bit) 

has a different associated kernel of 121 factors (i.e., the size 

of the kernel used to perform the filtering task is 11x11 

pixels), a huge amount of data should be stored (2
31

. 121 

kernel factors). In order to reduce the required memory 

resources, in the proposed hardware implementation, the 

range of 
2

f (x, y) (i.e. (0, 1.5], see Sec. III) has been 

discretized adopting a resolution of 0.1. 
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In this way, the number of sets of 121 Gaussian kernel 

factors has been limited to 14. Moreover, the required 

storage capability has been limited exploiting the symmetry 

of Gaussian kernel, also. Since Gaussian kernels are 

circularly symmetric matrices, many factors inside them 

are equal to each others. Fig. 9 shows an example of a 5x5 

Gaussian kernel structure, in which the kernel factors to be 

stored have been highlighted. 

 

Figure 9: Example of a 5 x 5 Gaussian Kernel Structure 

Since in a 11x11 Gaussian kernel the number of distinct 

kernel factors is equal to 21, in the proposed hardware 

architecture the internally stored data for each  
2

f (x, y)  

has been limited to this value. 

For these reasons, KFS has been implemented has a 

cluster of 14 21-input multiplexers, in which each 

multiplexer is driven by the same selection signal, whose 

value is defined depending on the current 
2

f (x, y). In this 

way, the cluster of multiplexers is able to provide in output 

the 21 factors useful to represent the Gaussian kernel 

associated with the current 
2

f (x, y). Finally, the 

multiplexer outputs are duplicated in order to reconstruct 

the complete set of 121 kernel factors for a given 
2

f (x, y). 

 

 

The reassembled set of kernel factors are then provided 

in input to the the Gaussian Filter together with the input 

pixels from the SIWB, that are delayed to be synchronized 

with the kernel factors. Then, Gaussian Filter computes the 

2D convolution between the input pixel patch (i.e., Pixels 

from SIWB in Fig. 6) by means of a MUL/ADD tree 

composed of a multiplier stage (i.e., 121 multipliers) and 7 

adder stages (i.e., 120 adders). 

IV. EXPERIMENTAL RESULTS 

To evaluate the hardware resources usage and the timing 

performances, the proposed architecture has been 

synthesized, resorting to Xilinx ISE Design Suite 14.4, on a 

Xilinx Virtex 6 VLX240 FPGA device. Post-place and 

route simulations have been done with Modelsim SE 10.0c. 

Table I shows the resources utilization and the maximum 

operating frequency of each module composing AIDI. 

To compare our architecture with the FPGA-based 

architectures for noise estimation and static Gaussian 

filtering presented, AIDI has been also synthesized on a 

Virtex II FPGA. 

Concerning the NVE module, it uses 3,202 LUTs and 3 

BRAMs, while the real-time noise estimator presented uses 

4,608 LUTs, 72 BRAMs and 24 DSP elements. 

The performances achieved by AIDI have been also 

compared with the architecture presented in [6]. Regarding 

the area occupation on a Virtex II FPGA device, the 

proposed architecture uses 37,695 LUTs and 24 BRAMs, 

whereas the FPGA-based static Gaussian filter presented in 

[6] uses 22,464 LUTs, 39 BRAMs and 32 DSP elements. 

The higher logic resource occupation (i.e., LUTs) of the 

proposed architecture is due to two main aspects. The 

former concerns the kernel used to perform the filtering 

task, that in AIDI is 11x11 while in [6] is 7x7 (i.e., the 7x7 

kernel size does not provide high filtering performance for 

high level of noise). The latter regards the adaptivity 

provided by AIDI that is not supported by [6]. Moreover, 

AIDI provides better timing performance than [6].  

In order to evaluate the improvements provided by AIDI 

w.r.t. a static Gaussian filtering approach, an evaluation 

campaign has been performed on the image dataset 

reported in Fig.7. 
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On these images, different levels of white Gaussian 

noise have been injected, spanning from a noise variance of 

100 to 4,000, exploiting the imnoise function provided by 

the MATLAB Image Processing Toolbox. Fig. 8 shows 

some examples of the injected noise on an image. 

The benefits provided by the adaptivity have been 

quantified computing the Mean Square Error (MSE): 

MSE = ∑   (I(x, y) – IF(x, y))
2      

                       (11) 

Where H and W are the height and the width of the input 

image, and I(x; y) and IF (x; y) are the pixel intensities in 

the (x, y) position of the noise free and the filtered images, 

respectively. 

 
Figure 10: Image dataset exploited for the evaluation campaign 

Each noisy image has been filtered using: 

 (i) A static 11x11 Gaussian filter (with a 
2

f equal to                    

k (see Sec. IV). 

(ii) A MATLAB model of AIDI (Adaptive (SW)), 

involving the double precision. 

(iii) The AIDI hardware implementation (Adaptive (HW)), 

which involves fixed-point representation. The graphs in 

Fig. 12 plot the trends of the MSEs, computed for each 

image composing the adopted image dataset (see Fig. 11), 

versus the variance of the injected noise. Fig. 12 highlights 

two main aspects: 

 

1) The error introduced by the fixed-point           

representation w.r.t. the double precision 

implementation can be neglected (Adaptive (SW) vs. 

Adaptive (HW) in Fig. 12) 

2) The MSE associated with the output of AIDI is 

always lower than the one affecting the output of a 

static Gaussian filter (Adaptive (HW) vs. Static in Fig. 

12). Moreover, the benefits increase for noise levels 

with 
2

f  ≤ 1; 000, while for higher noise levels, the 

improvement decreases because the local variance of 

the image is greatly influenced by the noise, and so it 

cannot be accurately computed. 

Finally, to prove the effectiveness of the proposed FPGA 

based adaptive filter in preserving edges w. r. t. a standard 

static Gaussian filtering approach, the images filtered with 

both methods have been provided in input to a Laplacian 

edge detector. Fig. 10a shows an example of image affected 

by white Gaussian noise with 
2

n = 1,500, while Fig. 12b, 

Fig. 12c, and Fig. 12d show the edges extracted from the 

non-filtered image, the filtered image with a static Gaussian 

filter, and the image filtered with AIDI, respectively. 

Despite the high injected noise, AIDI is able to filter the 

image without smoothing edges, improving the 

performance of the edge detector. Instead, the static 

Gaussian filter outputs a smoothed image, in which edges 

are weakened and difficult to be detected. 

 

Figure 11: Example of injected level of noise 
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V. CONCLUSION 

This paper presented AIDI a high performance FPGA 

based image denoiser for real-time applications. This IP 

core enables to self adapt the filtering parameters to the 

level of noise in the input image pixel by pixel, resulting in 

a more accurate filtered image. 

The experimental results show a strong improvement of 

the quality of the filtered image w.r.t. the one obtained 

from a static Gaussian filter, especially for noise level with 
2

n ≤ 1; 000. These enhancements allow to increase the 

precision of all the modules, composing an image 

processing chain, that receive in input the filtered image 

(e.g., edge detector). 

 
Figure 12: Laplacian edge extraction – (a) Noisy image in input  (σ2

n = 

1500) (b) Edge extracted from noisy image (c) Edge extracted From 

the image filtered by a static 11 x 11 filter (d) Edge extracted from 

image filtered by AIDI 
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