

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), An ISO 9001:2008 Certified Journal, Volume 3, Special Issue 1, January 2013)

International Conference on Information Systems and Computing (ICISC-2013), INDIA.

Sri Sai Ram Engineering College, An ISO 9001:2008 Certified & NBA Accredited Engineering Institute, Chennai, INDIA. Page 388

TOWARDS FAULT HANDLING IN B2B

COLLABORATION USING ORCHESTRATION BASED

WEB SERVICES COMPOSITION
U. Arul

1
, Dr. S. Prakash

2

1
Research Scholar, Department of CSE, Anna University, Chennai, India.

2
Professor, Department of ECE, Jerusalem College Engineering, Chennai, India.

arulmee08@gmail.com, prakash.sav4@gmail.com

Abstract

Recently, Web Services Composition is receiving significant amount of interest as an important strategy to allow Business-to-

Business collaboration. The current Web Services composition solutions are inherently unreliable, so how to deliver reliable Web

Services composition over unreliable web services is a significant and challenging problem. In this paper, we propose a

framework for reliable method of fault handling in B2B collaboration using Orchestration based Web services composition (WS-

BPEL). The Fault handling method is to be applied during the web services composition process in order to perform some

measure of exception handling. We developed a separate Fault handling module that could identify the faults and also that could

handle the faults during the composition process. We also devised the various Exception handling strategies that could provides

the series of action processing steps to execute alternative web service when a particular web service fails. Further more, we

designed an implementation module to implement the reliable fault handling logic that could be associated with WS- BPEL

business process.

Keywords— Web Services, Reliable Web services composition, Orchestration, Exception Handling.

I. INTRODUCTION

Web services are playing an important role in the

development of Business-to-Business collaboration. The

Web services collaboration already implemented in order

to provide new functionalities is an interesting approach

for creating an enterprise applications, distributed

applications and business processes. However, web

services may run in a highly dynamic environment in an

Internet that is existing web services may temporarily

unavailable due to server fault, system crash and network

failures etc. Such a highly unreliable environment

increases the probability of deviation situations that occur

during the execution of web services composition. So, it

is important to provide a support for reliable service

composition whenever the environment is changed.

However reliable Business-to-Business interaction has

not been investigated sufficiently and hence it is still an

open issue [1].

To provide reliability in Web service composition is

not considered as an easy task. WS-BPEL [2] which

attempts to implement a commonly accepted way for

defining web services composition, but it does not

support reliability at runtime.

It defines a business process workflow that specifies

the order of invocations (control flow) and rules for data

transfer between the business partner web services (data

flow). But the information about partner services,

composition logic and data dependencies must be known

at design time and it is clearly impossible for a composite

service to avoid the faults during its execution [3].

Therefore, this paper aims at delivering a correct service

in the presence of faults and it becomes a preferred

choice for providing reliable web services composition.

Exception handling technique for reliable service

composition tries to repair faults and let allow

composition of services to continue [4]. The WS-BPEL

has built-in exception handling mechanism. It provides

scopes with fault handlers to handle faults, which is

equivalent to handle faults in programming languages sch

as JAVA using the try-throw-catch mechanism. However,

service designers can develop reliable composite services

by using exception handling we observed the following

problems:

 The WS-BPEL constructs used to implement fault

handling solutions that are located at syntax level.

Hence, the business logic is associated with the

fault-handling logic which makes it hard to

implement and maintain both types of logic [5].

mailto:arulmee08@gmail.com

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), An ISO 9001:2008 Certified Journal, Volume 3, Special Issue 1, January 2013)

International Conference on Information Systems and Computing (ICISC-2013), INDIA.

Sri Sai Ram Engineering College, An ISO 9001:2008 Certified & NBA Accredited Engineering Institute, Chennai, INDIA. Page 389

 In practical situations, web services commonly

cannot be compensated or the compensation is

permitted only within a certain time period [6].

The rest of this paper is organised as follows: In the

following section gives a brief discussion about the

illustrative example of Loan Approval Composite service.

Section 3 introduces Orchestration and WS-BPEL, this is

followed in section 4 by a discussion of the proposed

framework architecture. Section 5 gives an overview of

faults in Web Services Composition. In Section 6 we

discuss WS-BPEL and its existing fault handling

methods. In section 7 we discuss current work on

correctness of Web Service Composition that related to

attaching fault handling logic to WS-BPEL. Section 8

presents some experiments to show the performance of

framework model and we conclude the paper in section 9.

II. ILLUSTRATIVE EXAMPLE

Figure 1, refers to illustrative example, which shows a

composite service that aims to verify whether to approve

or reject the home loan request submitted by a customer.

Our composite service gets a request from the customer.

It then invokes Loan Approval web service and waits for

response from it.

The Loan Approval web service in turn, which makes

the invocation to Credit Check web service. The credit

check service processes the received request message and

sends back the information about credit worthiness of the

customer to Loan Approval service. After receiving the

response from credit check service the Loan approval

service is verifying that whether the customer is credit

worthiness or not. If the customer is credit worthiness,

then the loan approval service invoke Home Appraisal

web service, otherwise it sends the rejection of loan as a

response message to composite service. The composite

service records the message in its local database and

sends it as a rejected loan application message to

customer. The Home Appraisal service invoked for

verifying whether the customer’s house is worth the sum

the loan, the customer is asking for. If then sends

response back the result of the house evaluation to Loan

Approval service. Upon receiving the response message

from Home Appraisal service, which verify whether the

customer is qualifying to get loan. After the verification

processing is getting over, it sends the reply that is

sending result message to composite service. The

composite service stores the SendResult message in its

local database also forwards the same message to the

customer.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), An ISO 9001:2008 Certified Journal, Volume 3, Special Issue 1, January 2013)

International Conference on Information Systems and Computing (ICISC-2013), INDIA.

Sri Sai Ram Engineering College, An ISO 9001:2008 Certified & NBA Accredited Engineering Institute, Chennai, INDIA. Page 390

III. ORCHESTRATION AND WS-BPEL

The process management of composite services can be

managed in centralized or decentralized manner. In our

paper, a centralized application that controls the process

management of composite services and invokes external

web services. This type of composition is usually called

as Orchestration [7], and these external partner web

services are as component services.

WS-BPEL [8] originated as a language from IBM, it is

an OASIS standard to describe web services composition.

There are two set of activities are compose a WS-BPEL

business process, these are basic and structured activities.

Basic activities exist to allow the invocation of an

external service and to expose an interface to the process

itself (to receive messages and send messages in reply),

to assign values to variables and to signal faults.

Structured activities, which are basically control the

execution of other activities nested inside it. Structured

activities exist to allow sequential, parallel, conditional

and looping execution (the sequence, flow, switch, pick,

and while activities). WS-BPEL has relationship with

WSDL. Interactions with partner services are modelled

as PartnerLinks. A PartnerLink has a PartnerLinkType

that defines which WSDL PortType is used in a

relationship with some partner and which PortType is

used when a partner interacts with the process itself.

These two relationships are defined in the partnerRole

and myRole attributes of the PartnerLinkType. For two

way relationships both are used. An important aspect of

using PortTypes means that WS-BPEL refers to services

in an abstract way and an execution engine to determine

what port (used for binding) should be used for each

PortType. In common, the bindings can be specified

statically at deployment time or dynamically by either

from within the process or using some engine-specific

mechanism.

IV. THE PROPOSED FRAMEWORK

A. Layered Web Service Structure

The framework represented here is based on a layered

Web service architecture that is consisting of six different

layers, which includes Transport layer, Message layer,

Service Description layer, Service Assurance layer,

Service Composition layer and Service Application layer,

which is shown in Figure 2.

The bottom is the transport layer contains widely used

communication protocols for communication, secure

communication, E-mail messaging etc., over a computer

network with especially wide deployment on the Internet.

The message layer is on the top of transport layer which

provides basic communication between web services and

enterprise applications. The next top layer is the service

description layer which provides the basic service

description technology that is based on XML, such as

WSDL, UDDI etc. The fourth layer is service assurance

layer which facilitates WS-Security, Reliable Messaging

among web services and WS-Transactions. The next top

layer is service composition layer. On the basis of service

failures and service unavailability, it is difficult to

implement composition of web services in reliable

manner. To implement reliability of web services,

improved exception handling and compensation logic are

added with this layer through our proposed framework

architecture.

Our work focuses on the top of business process

definition, particularly monitor and manages process

execution to ensure process reliability and robustness.

The higher layer is the service application layer which

performs useful activities for users.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), An ISO 9001:2008 Certified Journal, Volume 3, Special Issue 1, January 2013)

International Conference on Information Systems and Computing (ICISC-2013), INDIA.

Sri Sai Ram Engineering College, An ISO 9001:2008 Certified & NBA Accredited Engineering Institute, Chennai, INDIA. Page 391

B. The Reliable Service Composition Framework

Figure 3 gives a framework overview of Reliable

Service Composition, which consists of four parts: -

WS-BPEL Process Generator, Exception handling

module, Evaluator module and Implementation module.

From the top-down perspective, service designers

initially get business specification requirements and they

define normal business process in a graphical manner

through WS-BPEL Process generator that facilitates for

other people can easily understand the underlying

business semantics. Nowadays, there are some nature

tools available for this purpose, one of these is

ActiveBPEL designer [8]. The exception handling

module implements fault-handling mechanism that fully

exploits WS-BPEL built-in exception handling. It gives a

set of high level exception handling strategies. Whenever

a fault occurs during runtime it first employs an

appropriate exception handling strategies to repair it. If

the fault has been fixed, the composite service continues

its execution. Otherwise, exception handling strategy

brings the composite service back to a termination state.

The Evaluator module is used to check the correctness

of fault-handling logic. In particular, it identifies several

occurrences of faults and their conditions must comply

with it. If the fault-handling logic is verified as correct,

then implementation module will transform these

conditions into WS-BPEL codes and created them into
the valid business process using WS-BPEL.

The implementation module is used to realize WS-

BPEL constructs and complex exception handling

functionalities expressed by exception handling module.

The desired output of the implementation module is

reliable composite services which can be deployed and

executed on WS-BPEL execution engine.

V. FAULTS IN WEB SERVICES COMPOSITION

In this section, we identify the possible faults that can

occur and their impacts during the composition of web

services. A fault is a signal raised by a partner service

towards the business process context. When an error state

is reached to process context, in order to avoid abnormal

termination of process, the fault handling strategy is

called for recovering.

Here, we distinguish the three categories of faults [9]:

Partner service faults, Process faults and System faults.

Partner service faults are arising whenever there is the

invocation to external web services. The primary reason

is the web services commonly interact over unreliable

Internet connections. This type of faults can be again

classified into four subgroups: Unavailable Server faults,

Incorrect parameter faults, SLA faults and Timeout faults.

 Unavailable Server faults are deliberately thrown

by a partner service, due to failure to handle the

BPEL process requests by server. For example, a

flight service is invoked to book tickets, in order to

complete this operation, the partner service have to

access its database, but at this particular moment the

database server is downed for some problem.

 Incorrect parameter faults are thrown when a

service receiving incorrect arguments as input or a

process sends a wrong request which is not usually

processed by a partner service.

 SLA (Service Level Agreement) faults are thrown

when partner service completes its operation but

returned execution results cannot satisfy to the

predefined SLA. For example, the expected

completion time of one operation is 12 seconds in

the SLA, but the actual completion time of the

operation is 16 seconds.

 Time-out faults are thrown by BPEL process when a

partner service fails to complete its execution within

the predefined time frame, because of a slow

network or an overloaded partner server may result

in an elapsed delay in handling a request.

 Process faults are usually thrown by BPEL process

itself. If BPEL designer whenever not initialized

PartnerLink variables, then this type of faults can be

thrown by process.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), An ISO 9001:2008 Certified Journal, Volume 3, Special Issue 1, January 2013)

International Conference on Information Systems and Computing (ICISC-2013), INDIA.

Sri Sai Ram Engineering College, An ISO 9001:2008 Certified & NBA Accredited Engineering Institute, Chennai, INDIA. Page 392

For example, “Uninitialized Variable”, is one of a

common faults in BPEL which is thrown when the

input variable for an invoke activity has not been

initialized.

 System faults are raised from the supporting

platform where BPEL processes are running. For

example a temperature conversion web service is

undeployed due to the change of business

requirements. This is a situation arises when a

service requestor invokes this service, the hosting

server will inform it and that the service does not

available on specific end point definition.

VI. WS-BPEL FOR FAULT HANDLING

In this section, we explain the constructs available to

provide fault handling methods which are already exits in

WS-BPEL. There are four basic fault handling in BPEL

generally involves [10]: scope, fault, termination and

compensation.

A scope is a process container and context

environment for other business activities and usually that

can be denoted by a unique name. A scope activity

provides handlers for faults, events and compensation.

A fault is a signal raised by a business process towards

the enclosing scope, when an error reached in scope, the

fault handled by corresponding fault handlers for fault

recovering.

In an occasional case, a business process may need to

explicitly signal a fault. For this situation, BPEL

facilitates the throw activity. The faults thrown by throw

activity must be handled in the BPEL business process. If

fault is not handled properly then that will not be

automatically propagated to the client. Rather, the BPEL

process will terminate itself abnormally.

Termination is triggered when a running scope is

stopped, since fault raised by a parallel process. So,

termination mechanism used to recover from errors.

Compensation provides backward error recovery

mechanism for a specified scope, which is explicitly

invoked by the BPEL designer to undo the effect of a

scope whose execution has already smoothly completed.

There are two important types of constructs available in

BPEL for providing fault tolerance. The first of these are

compensation handlers, which are analogous to

application specific rollback or cleanup for reattaining a

state where execution can continue. The second type of

constructs are fault handlers, they provide forward error

recovery mechanism. These consists of catch blocks

which are explicitly catch the thrown faults that are

returned by invoke activity. Fault handlers are also

attached to a scope that is attached with a group of

activities.

But, a scope is to be terminated abnormally when a

fault handler is invoked which is unlike a compensation

handler. So that all activities in the scope that are

abnormally terminated.

The aim of our work is to utilize these fault handlers

as appropriate in order to implement various fault

handling logic patterns.

VII. ATTACHING FAULT HANDLING LOGIC TO WS-

BPEL

Our framework model facilitates to handle partner

service faults. In this framework, service designers must

mention the specification of fault handling logic during

design time. The fault handling logic must conform to

BPEL coding standards and according to the application

requirements.

The identification fault is identified by adding event

occurrence to the corresponding fault handler. The event

is triggering for a fault and it named as a qualified fault

name, which indicates that the fault occurs. The fault

name is always associated with specific operation in

WSDL document and namespace used as a prefix of the

fault, so it can be identified as unique qualified name.

When a fault is identified, then action can take place to

execute one of the exception handling strategies or

consistent termination of the business process.

The most common requirements in the practical SOA

applications [11], we present the following common

exception handling strategies:

 Retry

 Repeats the execution of service until it

completes successfully.

 It can be called when a web service is

inaccessible due to network problems.

 Ignore

 It does not take any special action but simply

ignores it and allows the composite service to

continue.

 Wait

 It delays the invocation of a web service to a

specified duration of time.

 The reason for that some web services are

available only in working time.

 Alternate

 It selects another function equivalent service

to perform the some task when a particular

service fails.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), An ISO 9001:2008 Certified Journal, Volume 3, Special Issue 1, January 2013)

International Conference on Information Systems and Computing (ICISC-2013), INDIA.

Sri Sai Ram Engineering College, An ISO 9001:2008 Certified & NBA Accredited Engineering Institute, Chennai, INDIA. Page 393

The SLA and process faults normally triggered from

normal business logic and they are often explicitly raised

by throw activity in WS-BPEL, however they do not

have any specific names in the WS-BPEL process level

but they often have names that is, HTTP status codes at

transport level.

VIII. EXPERIMENTAL ANALYSIS

We have developed a prototype model that based on

our framework. The initial part of the prototype is

designed to specify the fault-handling logic in the form of

event and its associated action patterns, which assists

service designers. The next part of the prototype model is

a set of Application Programming Interfaces (APIs) that

realize the Evaluator module and implementation module.

The final part of the prototype is WS-BPEL engine [12]

that is used to execute composite web services. In this

section, we conduct experimental study through the

prototype and then we study the experimental results in

terms of response time of composite services in WS-

BPEL engine.

A. Implementation Setup

We first develop different web services through JAVA

APIs such as JAX-WS, JAXB etc., and deploy them onto

Glassfish server using Netbeans IDE 6.5. Based on these

services, we develop a composite service called

LoanApprovalAgent whose normal business logic is

illustrated in Figure 1. Upon completion of above said

process, we use our framework to develop

FaultHandLAA, a fault-handling version of Loan

ApprovalAgent. After that, we define event and its

associated action patterns to represent fault-handling

logic that is evaluated and implemented in WS-BPEL

automatically by using our framework. Then, we deploy

the composite services onto WS-BPEL engine.

To realize an unreliable environment, the credit check

service is devised to complete successfully at a

probability of 0.7 and other services are allowed to

complete successfully always. All composite services are

invoked 10 times. LoanApprovalAgent completes

successfully in all tries. From the implementation setup,

it is clearly understand that our framework can improve

the reliability of composite services using fault-handling

logic.

B. Performance Analysis

We first develop various basic web services and

deploy them on set of PCs. After that, we develop a

composite service whose business workflow logic is to

invoke simple web services and deploy it on another PC.

In this setup all PCs have the same configuration. In

on composite service, we develop four fault-handling

logics, each of which uses one exception handling

strategy to handle faults. Each composite service is

executed 100 times and average response time is

obtained. The response time for basic services is fixed (at

500 ms) to evaluate the experimental results and for

comparison.

Chart 1 represents the average response time of

composite services associating different exception

handling strategies.

AVERAGE RESPONSE TIME OF COMPOSITE SERVICES

0

200

400

600

800

1000

1200

1400

1600

1800

Null Ignore Retry Alternate Wait

EXCEPTION HANDLING STRATEGIES

A
V

E
R

A
G

E
 R

E
S

P
O

N
S

E
 T

I
M

E

(
m

s
)

 No Fault

 System Fault

 SLA Fault

Chart 1 - Average Response Time of Composite Services

IX. CONCLUSIONS

In this paper, we have implemented framework

architecture for fault-handling logic of reliable web

service composition. We stated a set of high-level

exception handling strategies and created a new

classification of different faults. Based on above

invention, we devised, exception handling logics that are

associated with service composition techniques as the

underpinning fault-handling mechanism for the

framework. Moreover, we enhanced the framework by

introducing GUI based module to help web service

designers to specify and verify fault-handling logic and

other module to automatically implement fault-handling

in WS-BPEL. In overall, our framework model enriches

the reliable fault handing of web services composition in

efficient and easy manner.

International Journal of Emerging Technology and Advanced Engineering

Website: www.ijetae.com (ISSN 2250-2459 (Online), An ISO 9001:2008 Certified Journal, Volume 3, Special Issue 1, January 2013)

International Conference on Information Systems and Computing (ICISC-2013), INDIA.

Sri Sai Ram Engineering College, An ISO 9001:2008 Certified & NBA Accredited Engineering Institute, Chennai, INDIA. Page 394

To summarize, we hope that our framework model

provides a effective solution to reliable fault handing in

B2B collaboration using orchestration based web

services composition.

REFERENCES

[1] F. Puhlmann, “Why do we actually need Pi-Calculus for Business

Process Management,” In Proc. of 9th International Conference on
Business Information Systems (BIS 2006), Volume 85, pages 77-

89.

[2] D. Jordan and J. Evdemon, “Web Services Business Process

Execution Language Version 2.0, OASIS Standard,”

http://docs.oasis-open.org/wsbpel/2.0/serviceref, 2009.

[3] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic

Concepts and Taxonomy of Depenable and Secure

Computing,“ IEEE Trans. Dependable and Secure Computing,
Vol.1, no.1, pp. 11-33, Jan-Mar. 2004.

[4] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy,

“Coordinated Forward Error Recovery for Composite Web
Services,” Proc. International symposium Reliable Distributed

systems (SRDS’03), pp.167-176, 2003.

[5] C. Hagen and G. Alonso, “Exception Handling in Workflow

Management Systems,” IEEE Trans. Software Engg., Vol.26,

no.10, pp.943-958, Oct. 2000.

[6] B. Benatallah, F. Casati, and F. Toumani, “Web service

Conversation Modeling: A Cornerstone for E-business

Automation,” IEEE Internet Computing, Vol.8, no.1, pp. 46-54,
Jan./Feb. 2004.

[7] C. Peltz,”Web Services Orchestration and Choreography,”

Computer, Vol. 36, no.10, pp.46-52, Oct. 2003.

[8] ActiveBPEL, http://www.active-endpoints.com, 2009.

[9] A. Liu, Q. Li, L. Huang, M. Xiao, “A Declarative Approach to
Enhancing the Reliability of BPEL Processes,” in Proc. ICWS’07,

2007, pp. 272-279.

[10] F. Montesi, C. Guidi, I. Lanese, G. Zavattaro, “Dynamic Fault
Handling Mechanisms for Service Oriented Applications,” in Proc.

ECOWS’08, 2008, pp. 225-234.

[11] R. Hamadi, B. Benatallah, and B. Medjahed, ”Self-Adapting
Recovery Nets for Policy-Driven Exception Handling in Business

Processes,” Distributed and Parallel Databases, Vol.23, no. 1,

pp.1-44, 2008.

[12] OASIS Web services Business Process Execution Language

Version 2.0 “, http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-

v2.0-OS.pdf”, April 2007.

http://docs.oasis-open.org/wsbpel/2.0/serviceref
http://www.active-endpoints.com/

