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Abstract 

The problem of fixed-width Confidence Interval for the mean survival time is considered. Sequential procedures are adopted based 

on the maximum likelihood estimators (MLE) and uniform minimum variance unbiased estimators (UMVUE) of the scale parameter. 

A comparative study of the two sequential procedures is done and second-order approximations are obtained and they are proved to 

be ‘asymptotically efficient and consistent.’ 
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I. INTRODUCTION 

Exponential distribution plays an important part in life-

testing and reliability problems and it is the simplest and 

the most widely exploited model in this area. Early work by 

Sukhatme (1973) and later work by Epstein and Sobel 

(1953, 1954, 1955) and Epstein (1954, 1960) gave 

numerous results and popularized the exponential as a 

lifetime distribution, especially in the area of industrial life 

testing.  Sequential techniques have been utilized by 

several researchers to deal with various inferential 

problems related to one-parameter and two-parameter 

exponential distributions. For some citations one may refer 

to Basu (1971), Starr and Woodroofe (1972), 

Mukhopadhay (1974), Mukhopadhay and Hilton (1986), 

Chaturvedi and Shukla (1990), Chaturvedi (1996), 

Manisha, P., M.M. Ali and J. woo (2005) and Gupta and 

Bhougal (2006). 

In this paper, we consider the problem of constructing 

fixed-width confidence interval for the mean survival time, 

for addressing which in section 3, we consider the problem 

of sequential interval estimation. Sequential procedures are 

adopted based on the maximum likelihood estimator 

(MLE) and uniformly minimum variance unbiased 

estimator (UMVUE) of the scale parameter. A comparative 

study of the two sequential procedures is done and they are 

proved to be ‘asymptotically efficient and consistent.’ In 

section 4, the problem of sequential point estimation of the 

mean survival time is tackled. Consideration is given to 

squared-error loss function and linear cost of sampling.  

 

Two sequential procedures (one based on the MLE and 

the other based on the UMVUE of the scale parameter) are 

proposed. Second-order approximations are obtained and a 

comparative study is done.    

II. THE SET-UP OF THE ESTIMATION PROBLEMS 

Let  
,.....2,1iiX be a sequence of independent and 

identically distributed (i.i.d.) random variables from two-

parameter exponential distribution having the probability 

density function p.d.f. given by  
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Both   ,μ
1
 and   ,0σ  are unknown.  Have 

been recorded a random sample nXX ,.....,1  of size  ,2n  

the MLE’s of μ  and σ  are     nn XXX ,.....,min 11   and 
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Our first estimation problem is to construct fixed-width 

confidence interval for the mean survival time. For the 

model  1.2 , the mean survival time is   θσμXE  .  
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For  pre-assigned 0d  and  ,1,0α  suppose one 

wishes to construct a Confidence Interval for θ  having 

width d2  and coverage probability atleast .1 α   The 

MLE, as well as, the UMVUE of θ  is .

1

1




n

i

in XnX   

We define  .,dXdXI nnn    Using the facts that 

   
n

σ
XVarθXE nn

2

,   and applying the central limit 

theorem (CLT), we conclude that 
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 2.2   

Using  2.2  and denoting by  ,y  the cumulative 

distribution function (c.d.f.) of the standard normal variate 

(SNV), we get 
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 3.2  

Let ‘a’ be the constant defined by  

   .112 αa 
                            

 4.2  

Using the monotonicity property of the c.d.f., it follows 

from  3.2  and  4.2  that, in order to achieve 

  ,1 αIθP n   the sample size required is the smallest 

positive integer .0nn   

Where  

 .2
2

0 σ
d

a
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 5.2  

 

 

However, in the absence of any knowledge about ,σ  no 

fixed sample size procedure achieves the goals of 

‘preassigned width and coverage probability’ 

simultaneously for all values of .σ   In such a situation, 

motivated by  5.2 , in Section 3, we develop sequential 

procedures based on the MLE and UMVUE of .σ  

Our second estimation problem is the minimum risk 

point estimation of .θ   Let the loss incurred in estimating 

θ  by nX  be squared-error plus linear cost of sampling, 

that is, 

     ,,
2

nθXAXθL nn 
            

 6.2  

Where  0A  is the known weight.  The risk 

corresponding to the loss function  6.2
 
is  

   .
2

θ
n

σA
ARn 

                  
 7.2  

Treating n as a continuous variable, the value n  of n 

minimizing the risk  7.2  is  

 ,2
1

σAn 

                      8.2  

and substituting  nn  in  7.2 , the corresponding 

minimum risk is  

   .2  nAR
n                      

 9.2  

But, in the absence of any knowledge about ,σ  no fixed 

sample size procedure minimizes the risk for all values of 

.σ   As a solution to the problem, in conformity with 

 8.2 , in Section 4, we propose sequential procedure 

based on the MLE and UMVUE of .σ   

III. SEQUENTIAL PROCEDURES FOR FIXED-WIDTH 

CONFIDENCE INTERVAL ESTIMATION OF THE MEAN 

SURVIVAL TIME 

We first consider the sequential procedure based on the 

MLE of σ .                                            
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Let us start with a sample of size  2m .  Then, the 

stopping time  dNN 11   is the smallest positive integer 

mn 1 such that  
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          1.3                                                                                                  

After stopping with 1N  observations, we construct the 

interval   

               dXdXI NNN 
111

,  for .θ  

In the following theorem, we prove that the sequential 

procedure  1.3   is ‘asymptotically efficient and 

consistent’ in Chow-Robbins (1965) sense. 

Theorem 1 

 1N  terminates with probability one,                                        

                                                                     2.3  
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Where 
    

 
.

14

12

1

1
2

12 1

1







n

nχ
Z

n

n  

Since 
1nZ Z

L
  as ,1 n where Z is a Standard 

Normal Variate (SNV) and from Zacks (1971, p.561), 

   xυxx 11   as ,x where  .υ  stands for the 

p.d.f. of a SNV, we obtain from  7.3  that  
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 10 nas , hence the result  2.3  follows. 

Result  3.3  follows from the definition of 1N  given at 

 1.3 .  

From  ,1.3  we notice the inequality 
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or  
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 8.3         

Utilizing  3.3 , the fact that ..ˆ
1

1

saσσLim
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. (Since 

nσ̂  is a consistent estimator of σ )  and taking the limit of 

 8.3  throughout as ,0d  we get 
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Hence the result  4.3  follows. 

Let, for   01 1,10 nθ   and   .1 02 nθ    

Applying Markov’s inequality, we get  
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Since   is arbitrary, application of  4.3  to  9.3  leads 

us to      
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Let us denote by 
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It follows from the definition of 1N  given at  1.3  that 
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Which on applying exponential bounds leads us to 
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This inequality is also valid for the value 0h of h, which 

minimizes the function     
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Since 
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11exp1 <1, the series 

involved on the right hand side of  13.3  is convergent.  

Hence we conclude that, for a positive constant k,          
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Utilizing  14.3 , it follows from  11.3  that 
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Result  5.3  now follows on combining  10.3  and 

 15.3 . 

Finally, we have    
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We have shown [see  1.2 ] that   
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Application of      4.3,3.3,2.3  and Theorem 1 of 

Anscombe (1952) to  17.3  gives that 
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Since probability measure is bounded by unity, from 

   18.3,16.3  and dominated convergence theorem, we 

get, for Z to be a Standard normal variate 

    aZPIθPLim N
d
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 =   12 a  = α1 . 

and  6.3  follows. 

In the following theorem, we obtain the second-order 

approximations for the average sample number (ASN) 

corresponding to the sequential procedure  1.3 . 

Theorem 2  

For all 4m , as 0d ,  
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where ν  is specified. 
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Let us define a new stopping rule 

1N  as 
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It follows from a result of Swanepoel and Vanwyk 

(1982) that 1N  and 

1N  are identically distributed.  

Comparing  20.3  with equation (1.1) of Woodroofe 

(1977), we obtain in his notations,   
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Moreover, denoting by  xF , the c.d.f. of ,jY  we have  
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So that 1a .  Thus we obtain from Theorem 2.4 of 

Woodroofe (1977) that, for all ,4m  as ,0d  
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and the theorem follows. 

The following theorem provides the asymptotic 

distribution of the stopping time.  
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From  22.3  and  23.3 , 
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From    24.3,22.3  and the CLT,  
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It follows from        25.3,4.3,3.3,2.3  and 

Theorem 1 of Anscombe (1952) that, as 0d ,                  

    .1,0ˆ
2

22

2

0

1
Nσσ

σ

n L
N           26.3  

Application of  26.3  to  21.3  leads to the desired 

result. 

 

Remarks 1:   

One can use the technique of Bhattacharya and Mallik 

(1973) or Woodroofe (1977) in order to obtain the 

asymptotic distribution of stopping time.  However, our 

method of obtaining the same is simple and direct.  We can 

also obtain the result  5.3  from Theorem 4.2.  But, it 

requires 4m , whereas,  5.3  holds for all .2m  

Now we consider the sequential procedure based on the 

UMVUE of σ . 

We take  2m  as the initial sample size.  Then, the 

stopping time  dNN 22   is the smallest positive integer 

mn 2  such that  
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After stopping with 2N observations, we construct the 

confidence interval    
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,  for θ . 

 

Now we state the following theorems, concerning 

various results for the stopping time 2N . 

Theorem 4:  

 2N  terminates with probability one  
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Proof:  The proof is similar to that of Theorem 1. 

Theorem 5:  For all 4m , as ,0d  

         ,103202  νnNE  

where ν  is same as in Theorem 2. 

Proof:  The proof can be obtained along the lines of that of 

Theorem 2. 

Remarks 2:  

  It is to be noted here that 2N  enjoys all the ‘optimal’ 

properties of 1N .  However, if we compare Theorems 2 

and 5, we conclude that ASN for 2N  is slightly higher than 

that of 1N . 

Theorem 6:  As ,0d       .4,00
2

1

0 NnNn
L

2 


 

Proof:  The result can be obtained along the lines of that of 

Theorem 3.  
0d

Lim   ,1
2

αIθP N   ‘asymptotic consistency’ 

IV. SEQUENTIAL PROCEDURES FOR THE POINT 

ESTIMATION OF THE MEAN SURVIVAL TIME 

First of all, we consider sequential procedure based on 

the MLE of .σ  
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We begin with a sample of size  .2m   Then, the 

stopping time  ANN 11   is defined by  
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After stopping, we estimate θ  by .
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In what follows, we obtain second-order approximations 

for the risk corresponding to the sequential 

procedure  1.4 .  Before proving the main result, we 

establish some lemmas.  
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It follows from Swanepoel and Van Wyk (1982) that 1N  

and 

1N  follow the same probability distribution.  
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Applying the result that  
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Furthermore, on the event   ., 11
1

  ηWnηN   

Thus, 
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 10.4  

Since 1N  terminates with probability one.  Result  6.4  

now follows on combining  9.4  and  .10.4  
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1,0 is uniformly integrable. 

Proof:  See Lemma 2.1 of Woodroofe (1977). 
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Proof: The result follows from Theorem 2.3 of Woodroofe 

(1977). 
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Lemma 6:  For all ,3m   
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Proof:  By Cauchy-Schwartz inequality, we have 
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It follows from Lemma 5 of Chow and Yu (1981) that 

 
  











 

n
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2

11  is uniformly integrable.            14.4  

Application of Lemma 5 and  14.4  lead us to  .11.4   A 

similar proof holds for  .12.4  

Lemma 7: 
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Proof: The result follows from Bhattacharya and Mallik 

(1973). One can also follow the technique of the proof of 

the Theorem 3. 

The main result is now proved in the following theorem, 

which provides second-order approximations for the risk 

corresponding to the sequential procedure  1.4.1  

Theorem 7: For all ,,6  Aasm  
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Proof:  We can write  2.4  as 
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Where   .2 xxf   Expanding  xf  around  1x  by 

Taylor’s series, we obtain for ,11 1 
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                               15.4  

It follows from Wald’s lemma for cumulative sums that  
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2
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NEYVarNSE jN   

                      .4 1NE
                

 16.4  

Applying Lemmas 1, 3, 4, 5, 6, 7, and  16.4 , we obtain 

from  15.4  that, for all ,,6  Aasm  
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and the theorem follows. 

Remarks 3:  The method of obtaining the second-order 

approximations for the risk presented in Theorem 7 is 

simpler as compared to that of Woodroofe (1977), as it 

does not require complicated estimation of various 

components comprising the risk. 

Let us now consider the sequential procedure based on 

the UMVUE of .σ  

 Let us take  2m  to be the initial sample size.  

Then, the stopping time  ANN 21   is defined by  

 

 .ˆ:inf
2

2

2
1

222 







 

nσAnmnN

     

 17.4  

After stopping, we estimate θ  by ,
2NX  having the 

associated risk  

      .2

2

22
NEθXAEAR

NN 





 
    

 18.4  

 Now we state the following theorem, which 

provides second-order approximations for the risk  18.4 .     

The proof of the theorem is similar to that of Theorem 8.  

We omit the details for brevity. 

Theorem 9:  For all ,,6  Aasm  

    .1747.115
2

onARN    

Remark 4:  From Theorem 8 and 9, we conclude that the 

risk corresponding to the stopping rule 2N  is higher than 

that associated with .1N  Thus, the use of MLE of σ  is 

preferred than its UMVUE. 
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