Abstract— This research presents an algorithm for labeling connected components in binary images based on searching around black operations of an image. The proposed new algorithm walks around black to identify their boundaries. A one-dimensional array used to keep label equivalences, for uniting equivalent labels successively during the operations in different directions. The boundaries of the object are the most interesting parts to be identified. The algorithm applies two processes of labeling, one is row-wise from left to right and one is column-wise, from top to bottom at initial zero iteration. A sub image I[I,J] is, defined after each labeling allocation. It is generated by subtracting the iterative labeling obtained at I[I,J] row-wise and labeling obtained at I[I,J] column-wise. The new image for next iteration I[I,J]=I[I,J] row-wise ∩ labeling obtained at I[I,J] column-wise . The proposed algorithm is very useful in different areas of image processing such as, medical imaging which focus on accuracy than other important measurements as well. One important application is the medical image that shows a tumor surrounded by other components, it is the medical image showing the tumor with the surrounding tissues. The proposed new algorithm can also be used and generalized for higher dimensions. The proposed algorithm has desirable characteristics in term of accuracy with acceptable CPU computer time. Such method based on walking around black, to mark their boundaries.

Keywords: Binary Image, Binary mask. Connected Components, Stack, Push and Pop operation.

I. INTRODUCTION

Connected components labeling, scans an image and groups its pixels into components based on pixel connectivity, i.e. all pixels in a connected component, share similar pixel intensity values, and are in some way connected with each other. It is commonly used to refer to the task of grouping the connected pixels in an image. Extracting and labeling of various disjoint and connected components in an image, is central to many automated image analysis applications. Mathematical formulation of the problem can also be written as follows:

A graph G=(N, E) can be thought of as a collection of points (here-after nodes) N={i, i=1..n}, where n=|N| is the number of nodes, connected via directed or undirected links (arcs), E={(i, j) for some i and j in N}, where m=|E| is the number of arcs in the graph and (i, j) denotes an arc whose head is i and tail is j. We can represent a graph efficiently by specifying n and m and giving an array A(m,2) giving the heads and tails of each arc:

$$A(e_{ij}):=[i,j] \quad \ldots \ldots \ldots \ldots .(1)$$

The connected components labeling algorithm consists of assigning each node i a label c(i) such that two nodes have the same label if and only if there is a path in the graph connecting the two nodes. Our purpose at the end will be to select only for those arcs and nodes that belong to a selected (usually the one containing the source or sink in network optimization problems) connected component. Different advanced research developed by [2,9] tried to detect buildings, and obtain a labeled image after segmentation. They have a labeled image and a binary mask for the desired objects.
However, there are several labels in the region of corresponding component in binary mask to merge these regions in labeled image and give them a single label for each object. The operation of merge building segment labels, are part of a building object indeed. They found that the traversing of the pixels of objects in the binary mask is the most cumbersome way.

Other algorithms where developed in this field by [2,3,5,10]. They developed new strategies that can be used to improve the speed of connected component labeling algorithms. To assign a label to a new object, most labeling algorithms use a scanning step that examines some of its neighbors. One strategy exploits the dependencies among the neighbors to reduce the number of neighbors examined. Second strategy uses an array to store the equivalence information among the labels. This algorithm replaces the pointer based rooted trees used to store the same equivalence information. It reduces the memory required and also produces consecutive final labels and array based structure instead of the pointer. Such continuous development shows that after completing the scan, the equivalent label pairs, are sorted into equivalence classes and a unique label is assigned to each class. The proposed algorithm were very useful in different interesting areas of image processing such as, medical imaging related to a tumor surrounded by other part of body such as bones, lungs and others. In an early version containing only empirical study of the algorithms were reported at SPIE Medical Imaging Conference 2005 and others [10]. Actual and practical images were not included in most of the algorithms showing its validity for different binary images. Key element of their algorithms were based on a simple union-find data structure and a set of algorithm to work on it [7,9,11].

Two linear-time algorithms on this topics is presented by [7], the first also for reporting the number of connected components and the other for labeling every element of value 1 (or white pixel) by its component index. An important feature of their input image algorithms is that they can be implemented without using any extra array other than the one, or and they are suitable for embedded software. [3,4], developed a generalization of polygons by showing explicit mapping between the first non-negative integers and the n-sequentially traversed vertices of any of Peano polygons. Such generalized polygons have been later called Murray polygons, since they are derived using multiple radix or Murray arithmetic [3,5]. It has been noticed also that Murray polygons divided an image into a collection of tiles or run-lengths of different sizes and shapes. Hence, the pixels which are lying inside a tile need not be considered for finding the connected components. Also, for the points which are on the boundary of a tile, one needs to consider connectivity in at most three directions instead of eight directions, taking in consideration an efficient algorithm for: Curve direction (the start point of curve in a tile), boundary pixels detecting (different cases which determine the size of a tile) and direction number (the neighborhood points which have to be considered for the boundary points, connected labeling must be numbered according to the 8-neighbour direction). Such considerations are shown in Figure 1.

![Figure 1. Curve directions.](image-url)
Applying boundary pixels procedure as described before requires visiting each pixel in the tile and consequently visiting all pixels in the binary image. This results to a waste of large computer time for unnecessary visit of large number of pixels, in order to determine which one is inner and which is boundary.

Polygons deal with a tile to be completely black or white, depending upon an accuracy parameter input by user. This means: if the accuracy is 10% then it is enough to make the whole tile black. This makes technique not efficient enough to determine the exact boundary of a tumor region as an example.

For these reasons, we developed a new algorithm which overcomes all the previous difficulties in order to end up with an efficient, fast and accurate result.

II. PREVIOUS KNOWLEDGE AND BASICS OF MATHEMATICAL STRUCTURE:

A graph \(G=(N, E) \) can be thought of as a collection of points (nodes or vertices), \(N=\{i, i=1..n\} \), where \(n=|N| \) is the number of nodes, connected via directed or undirected links (arcs), \(E=\{e_{i,j}\} \) for some \(i \) and \(j \) in \(N \), and \(|E|=m \) which is the number of arcs in the graph and \(e_{i,j} \) denotes an arc whose head is \(i \) and tail is \(j \).

In labeling techniques, we put a label (a number) on each vertex, and doing so creates a label for each edge. Final stage is to label graphs or sub-graph according to various rules, and ask questions about whether the graph can be labeled according to the rules, what the largest number needed as a label might be, how such labels are connected and what are their components. For an \(N \times M \) size binary image, we use \(p(x, y) \) to denote the pixel as well as its value at \((x, y) \) in the image, where \(0 \leq x < N \) and \(0 \leq y < M \). We assume that the foreground pixels and background pixels in a given binary image are represented by 1 and 0, respectively. As in most labeling algorithms, we assume that all pixels on the border of an image are background pixels. Connected component labelling works by scanning an image, pixel-by-pixel (from top to bottom and left to right) in order to identify connected pixel regions, i.e. regions of adjacent pixels which share the same set of intensity values. When only the four nearest neighbours are considered part of the neighbourhood, then pixels \(p \) and \(q \) are said to be “4-connected”.

A pixel is a 4-neighbor of pixel \(p(x, y) \) if it shares an edge with \(p(x, y) \). The 4-neighbors of pixel \(p(x, y) \), namely \(p_2, p_4, p_6 \) and \(p_8 \), are shown in Figure 2. On the other hand, a pixel is an 8-neighbor of pixel \(p(x, y) \) if it shares an edge or a vertex with \(p(x, y) \). The 8-neighbors of pixel \(p(x, y) \), namely \(p_1 \) to \(p_8 \) are as shown in Figure 3.

<table>
<thead>
<tr>
<th></th>
<th>p2</th>
<th>p4</th>
<th>p(x,y)</th>
<th>p6</th>
<th>p8</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td>p2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p(x,y)</td>
<td>p4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p6</td>
<td>p4</td>
<td>p(x,y)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p8</td>
<td>p6</td>
<td>p8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. The 4-neighbors of pixel \(p(x, y) \), namely \(p_2 \), \(p_4 \), \(p_6 \) and \(p_8 \).

<table>
<thead>
<tr>
<th></th>
<th>p1</th>
<th>p2</th>
<th>p3</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td>p1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p3</td>
<td>p2</td>
<td>p3</td>
<td></td>
</tr>
<tr>
<td>p4</td>
<td>p2</td>
<td>p4</td>
<td></td>
</tr>
<tr>
<td>p(x,y)</td>
<td>p4</td>
<td>p(x,y)</td>
<td></td>
</tr>
<tr>
<td>p6</td>
<td>p4</td>
<td>p6</td>
<td></td>
</tr>
<tr>
<td>p7</td>
<td>p6</td>
<td>p7</td>
<td></td>
</tr>
<tr>
<td>p8</td>
<td>p7</td>
<td>p8</td>
<td></td>
</tr>
<tr>
<td>p9</td>
<td>p8</td>
<td>p9</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. The 8-neighbors of pixel \(p(x, y) \), namely \(p_1 \) to \(p_9 \).

Using the basic general problem statement in most of literature [8], and taking in consideration that the graph \(G \) be \(n \times n \) binary image such that each pixel value \(G(x, y) \) is either 0 or 1, then a pixel of value 1 (resp., 0) is called a white pixel (resp., black pixel). For a pixel \(p(x, y) \), we define the neighborhoods:

\[
N_4(p) = N_4(x, y) = \{(x, y), (x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)\}, \text{ and} \\
N_8(p) = N_8(x, y) = \{(x', y') | x' = x - 1, x, x + 1, y' = y - 1, y, y + 1\}.
\]

Two white pixels \(p \) and \(q \) are called 4-connected (resp., 8-connected) if there exists a sequence of white pixels \(p = p_0, p_1, \ldots, p_k = q \), such that:
Interesting researches in this topic [15, 21, 23] and others in literature, present two new strategies to speed up connected component labeling algorithms. The first strategy employs a decision tree to minimize the work performed in the scanning phase of connected component labeling algorithms. The second strategy uses a simplified union-find data structure to represent the equivalence information among the labels.

Straight forward recursive algorithms are also presented by different authors, and some are efficient algorithms compared with the classical methods. Using such process, one can take a pixel, and check its neighbors for connectivity. As the image size grows, the time taken by the algorithm increases rather quickly, and would not get into the details of such algorithm. Other old and efficient algorithm designed by [3, 4] which uses the union-find data structure to solve this problem (read about the union-find data structure), and that too quite efficiently. It uses the result from the classical algorithm for connectedness in graph theory. In this algorithm, one can find that it consists of two passes. In the first pass, the algorithm goes through each pixel. It checks the pixel above and to the left. And using these pixel’s labels (which have already been assigned), it assigns a label to the current pixel. In the second pass, it cleans up any mess it might have created, like multiple labels for connected regions. The interesting techniques published lately, [1, 5, 7, 8, 21, 23] concentrate on data structure and order of operations and of how many pass required. All proposed ideas are basically run as follows: in the first pass, every pixel is checked one by one, starting at the top left corner, and moving linearly to the bottom right corner. At any given time, one can only need to have two rows of the image in memory. If the pixel is a background pixel (its value is zero, or whatever other criteria you want), we simply ignore it and move on to the next pixel. If not, you go to the next step which is related to fetching the label of the pixels just above and to the left of the pixel then it is store into two arrays. The second pass performs the algorithm by going through each pixel, one by one. It checks the label of the current pixel. If the label is a ‘root’ in the union-find structure, it goes to the next pixel. Otherwise, it follows the links to the parent until it reaches the root. Once it reaches the root, it assigns that label to the current pixels.

Other interesting algorithms developed based on Iterative techniques [5, 7, 13, 23]. Generally, these algorithms are performed, based on the following steps:

1. The binary image (obtained after thresholding) is first scanned through and each non-zero pixel (assuming that the image has the foreground objects in white against a black background) is labeled sequentially through 1 to the maximum number of non-zero labels. This forms the label array.

2. Next, the non-zero elements in the label array are analyzed and the minimum label value in a neighborhood is computed. All elements in the neighborhood are labeled with the minimum label value.

3. Finally, the labels are re-labeled in increasing order of the label count.

Recently, Labeling connected components and holes and computing the Euler number in a binary image for image analysis, pattern recognition, and computer (robot) vision, are usually made independently of each other in conventional methods are discussed by [7, 15, 18 21, 22, 23]. There research proposes a two-scan algorithm for labeling connected components and holes simultaneously in a binary image by use of the same data structure. With such algorithm, besides labeling, they can also calculate using such algorithm, the number and the area of connected components and holes, as well as the Euler number. Their experimental results demonstrate that such method is much more efficient than conventional methods for various kinds.
of images in cases where both labeling and Euler number, computing, are necessary. A variety of region labeling algorithms have been described in the literature, and each presents labeling connected component, in a different manner and as he proposed for simplicity and efficiency.

III. PROPOSED TECHNIQUE

Researchers often face the need to detect and classify objects in images. Technically, image objects are formed out of components that in turn are made of connected pixels. It is thus most equitable to first detect components from images. When objects have been successfully extracted from their backgrounds, they also need to be specifically identified [7].

The new developed algorithm is totally different than other polygon technique. It does not go through black boundaries but it goes around them to mark their boundaries. Hence, it labeled the connected components efficiently and it requires much less computer time than others and particularly other known Murray Polygons technique. The data structure used is the stack and the operation PUSH and POP are the main engine of the algorithm.

Using old polygons technique divides the image into tiles and then a path has to be drawn through tiles depending on the results obtained from the different four directions. This is practical only when the image dimensions are odd in x and y directions. It cannot be applied for even cases.

Applying boundary pixels procedure as described before, requires visiting each pixel in the tile and consequently visiting all pixels in the binary image. This results to a waste of large computer time for unnecessary visit of large number of pixels, in order to determine which one is inner and which is boundary.

Old polygons (such as Murray polygon), deal with a tile to be completely black or white, depending upon an accuracy parameter input by user. This means: if the accuracy is 10% (as we said before), then it is enough to make the whole tile black. This makes technique not efficient enough to determine the exact boundary of a tumor region application as an example.

In the proposed technique, usually the image is scanned and unlabeled foreground pixel is marked with a new label and its position is pushed on a stack until a foreground pixel is found. If the stack is not empty the pixels on the stack are pointed with the label and then the pixel in the neighborhood is pushed on the stack. Finally, the next selected point is selected when the stack is empty in order to continue iteratively the search technique of next appropriate point. The developed new algorithm will overcome some of previous difficulties in order to end up with an efficient and accurate result. Depending on results and advantages of many research in this topic, we develop our proposed algorithm depending on such results described by [4,6,7,12,13].

For implementation of the proposed technique, we will use Murray Polygons technique, for the purpose of showing better representation of our algorithm for the proposed technique, in addition to simplification of its implementation, for comparison purposes only.

IV. DISADVANTAGES OF OLD TECHNIQUE

When applying any of known Techniques such as Murray polygons as an example, we faced many difficulties:

i) Using such technique divides the image into tiles and then a path has to be drawn through tiles depending on the results obtained from the different four directions. This is practical only when the image dimensions are odd in x and y directions. It cannot be applied for even cases.

ii) Applying boundary pixels procedure as described before requires visiting each pixel in the tile and consequently visiting all pixels in the binary image. This results to a waste of large computer time for unnecessary visit of large number of pixels, in order to determine which one is inner and which is boundary.

iii) Murray polygons as an example, deal with a tile to be completely black or white, depending upon an accuracy parameter input by user. This means: if the accuracy is 10% then it is enough to make the whole tile black. This makes such Murray polygon technique as an example, not efficient enough to determine the exact boundary of a
tumor and others and this is also similar for other known

techniques. Results obtained by the proposed technique are
efficient, and presents accurate result. The new developed
algorithm is totally different and it does not go through
black boundaries but it goes around them to mark their
boundaries. It labeled the connected components efficiently
and it requires much less computer time than others and
particularly than Murray Polygons technique which is also
implemented for comparison purposes. The data structure
used is the stack and the operation using PUSH and POP
are the main engine of the algorithm. The data pushed and
popped from stack are the directions, which are the paths
searched for, in order to find the boundary pixel, to
determine the connected components.

We scan the directions (ScanBoundaries function) of a
pixel in order to know where the next branch or move will
be. Boundary pixel is determined as follows:

a) Search for a pixel that has at least one pixel around it
with different color. As we described before, each
pixel has eight pixels around it. If we are interested in
black, then there should be at least one non black pixel
exists around it, in order to mark it as boundary pixel.

b) Once the first boundary pixel is detected, it will be
colored, and its coordinates will be taken as initial
start and a scan to eight directions around the previous
pixel will be done iteratively.

c) If the pixel has been detected as a Boundary of these
eight directions, then its location using coordinate (x,
y) will be pushed to the stack after coloring it, on
screen and a scan will be done again for that pixel
iteratively. These steps will be performed continuously until a dead-end is reached (no more
boundary pixels), and such iterative procedure is
terminated.

d) When dead-end is reached, DBoundaries function will
be executed. It will POP the coordinates (x, y), the
color of the pixel (ColorPixel function), and
returnback iteratively to scan for boundaries again, as
shown in the main functions in Figure 4 below:

Main Functions [Row or column process]:

```c
{ ScanBoundaries(int Col, int Row,int Np)
    {   Check for boundary Pixel:
        if (Boundary(Col,Row,Np) )
            Perform: PUSH(Col,Row,Np);
            .
    }
    DBoundaries( );
    { Fix the coordinates ;
        Perform: POP();
        Perform: ColorPixel (x,y,Color);
        Repeat iteratively: Scan-boundaries(x,y);}
// PUSH (x, y, NP) :
//Generate Link Array:
// Update the link ;
// increase stack pointer by one ;
// Increase: Counter ++;
// increase stack counter by one;
// Increase Array Location:  Pointer =Pointer +2;
// As follows:
    PUSH(int x, int y,int NP) {
        PutPixel(x,y,Color);
        Arr[t]=x;
        Arr[t+1]=y ; t=t +2;
        StackCount+=1;
        // Pointer =Pointer-2; 
        // decreament stack pointer by 2 ;
        // Counter - ;
        // decreament stack counter by one;
        // Move NULL;
        // make the last pointer NULL;
        POP () { 
            Col=Arr[t-2]; R=Arr[t-1];
            t=2; StackCount-=1;
        }
}
// Figure 4. Application of Data Structure.
```

It is worth mentioning that after completing the scan, the
equivalent label pairs are sorted into equivalence classes
and a unique label is assigned to each class. As a final step,
a second scan is made through the image, during which
each label is replaced by the label assigned to its
equivalence classes. For display, the labels might be of
different gray levels or colors. Regions of adjacent pixels
which share the same set of intensity values equal to 1 for
binary image, while in gray level image intensity will take
on a range of values between “0 to 255”, as an example.
V. MAIN ALGORITHM AND RULES

For the purpose of implementation, the following are the main functions required to build this algorithm using simple (like C/C++) programming statements language:

1- Assign the following Global variables as follows:

 Assign as integers:
 StackCount=0;
 t=0;
 Col,Row; // column and row declaration.
 BackColor; Np; // Np=4 for 4-neighborhood, Np=8 for neighborhoods
 A[8]; // Nodes for Np(4) or Np(8)
 Locx[8], Locy[8]; // Coordinates of x_i, y_i .
 Arr[640];
 // BackColor is the color selected for Background, Np for neighborhood selection.
 Read BackColor,Np as : Scanf("%d %d %d",
 BackColor, Np);

2- Define the main Functions [row or column process]

 // Input : x-Coordinate , y-Coordinate,
 //Output is value of Flag.

 Function Boundary (int x, int y, int NP)
 Begin:
 {
 Assign: Flag=0;
 Assign: ActualColor= GetPixel(x,y);
 // visit pixel and Check if it is Boundary pixel
 if (ActualColor == BackColor)
 {
 // Assign the 8-neighbors of pixel p(x, y), namely p1 to
 // p8 as shown in Figure (3).
 // The GetPixel function retrieves the red,
 // green, blue (RGB) color value of the pixel
 // at the specified coordinates.
 GetPixel(x-1,y+1);
 GetPixel(x-1,y-1);
 // Assign in case of the 4-neighborhood of pixel p(x, y),
 //namely p2, p4,p6,p8 as shown in Figure (2).
 // A[0]= GetPixel(x+1,y+1); A[1]= GetPixel(x+1,y);
 GetPixel(x+1,y+1);
 // A[3]= GetPixel(x+y-1);
 // if (A[i] != BackColor && A[i]) != ActualColor)
 Flag = 1;
 // Return value of Flag=1 when it is a boundary pixel.
 }
 End Loop;
 Otherwise:
 return Flag;
 // Return value of Flag when it is Not in all case, a
 // boundary pixel.
 }

3- Drop boundary by performing POP operation from
the stack and repeat scanning of for boundary.

 Function Dboundries()
 {
 POP ()
 ScanBoundries(Col , Row, Np);
 }

4- Push Boundaries to stack.

 Function ScanBoundries(int x,int y,int NP)
 {
 int Locx[8],Locy[8];
 Define: Locx[0]= x+1;Locy[0]=y-1; Locx[1]=
 x+1;Locy[1]=y;Locx[2]= x+1; Locy[2]=y+1;
 // The 4-neighbors of pixel p(x, y), namely p2, p4, p6, p8
 // as shown in Figure (2),
 // Locx[0]= x; Locy[0][0]=y+1 ;Locx[1]= x-1; Locy[1]=y ;
 Assign: t=0;
 Loop:
 for (i=0; i<Np;i++)
 {
 if Boundary (Locx[i],Locy[i], Np)
 {
 Push (Locx[i], Locy[i], Np);
 t+=1;
The basic scanning procedure for performing connected component labeling is to visit each pixel in turn, and assign a label to each object pixel that is either a label of its neighbors’ or a new distinct label if its neighbors are all background pixels.

Denote the two dimensional array Arr[i] for an image. Let Bcolor defines background pixel, which can be defined by user, (usually given a value equal 0) and define ActualColor parameter be color pixel for a specific object. Locations of x, y coordinates and color of a given pixel i is saved at Arr[i], Arr[i+1], and the color can be returned using GetPixel(x,y) for the stack. In our implementation of labeling algorithm, we use one array to hold coordinates and color of a pixel. However, we will describe then in the like-C language functions in this work as independent values as Locx[i], Locy[i] and GetPexel(Locx(i), Locy(i)) parameters. The problem of connected component labeling is to fill the array Arr with (integer) labels so that the neighboring object pixels have the same label, and.

Note that we have made an arbitrary choice of denoting a background pixel by input value for parameter Backcolor and an object pixel by ActualColor parameter. The pixel in the scan operation is illustrated in Figure 5 and Figure 6 respectively. If we denote the two dimensional array I[x, y] for an image, then I[i, j] = 0 denote a background pixel, and I[i, j] = 1 denote an object pixel. The one dimensional array Arr with maximum size N X M where N is the number of Row and M is the number of Col of image are used to define the stack. In our implementation of the labeling algorithms, we use the stack array Arr to hold boundary pixel which might be Pushed or Popped according to its intensity or color. The connected component labeling is to fill the array L with integer labels so that the neighboring object pixels have the same label with arbitrary choice of denoting a background pixel BackColor by 0 and an object pixel by 1. The assignment of a provisional label for pixel denoted by pixel p during the scan can be expressed as follows:

∀ k, j, k=0,…,Row, j=0,…,Col

Modify nesting loops to use it for purpose of applying row-wise or column wise

Assign: t=0;
Loop:
for (i=0; i<Np;i++)
if Boundary (Locx[i],Locy[i], Np)
{
Push (Locx[i], Locy[i], Np);
t+=1;
}
End Loop;
If (t==0)
Drop Boundary: DBoundries ();
}

In other word, the location of pixel declared as follows:

Arr[i] ← x_coordinate [min I [locx[i],locy[i]]]
I ∈ Np(4 or 8)-(x,y) , I[locx[i],locy[i]] =1

Arr[i+1] ← y_coordinate [min I [locx[i],locy[i]]]
I ∈ Np(4 or 8)-(x,y) , I[locx[i],locy[i]] =1

Arr[StackCount] ← y_coordinate I [locx[i],locy[i]]
If ∃ i ∈ Np(4 or 8)-(x,y) , I[locx[i],locy[i]] =1
Arr[Stackpointer+1] ← y_coordinate I [locx[i],locy[i]]
If ∃ i ∈ Np(4 or 8)-(x,y) , I[locx[i],locy[i]] =1
Otherwise:

\[
\text{Arr}[i] = \text{Arr}[i+1] = \text{Null} \quad \text{if} \quad I[\text{locx}[i], \text{locy}[i]] = 0
\]

And

\[
\text{Arr}[i+1] = \text{Null} \quad \text{if} \quad I[\text{locx}[i], \text{locy}[i]] = 0
\]

Figure 5. Rules and function structures

VI. ITERATION PROCESS

This algorithm uses the iteration process of connected labeling of an image, by applying iterative technique of labeling row-wise and column-wise. Let \(I[I,J] \) be the binary image. If \(\text{Label-R}[K,J]^i \) \(, \) \(\text{Label-W}[K,J]^i \), be the labeling of connected components for all pixels of an image both row-wise and column-wise, at iteration \(i \), respectively, \(K=0,...,\text{Row} \), \(J=0,...,\text{Col} \), then labeling obtained by the above algorithm is used to generates a new sub-image denoted by \(I[I,J]^{i+1} \) at iteration \(i+1 \) by calculating first the intersection between \(\text{Label-R}[I,J]^i \) \(, \) and \(\text{Label-W}[I,J]^i \) then find the next generating sub-image as:

\[
I[K,J]^{i+1} = I[K,J]^i \cap \text{labeling pixels obtained from image } I[K,J]^i \text{ row-wise } \cap \text{labeling pixels obtained from image } I[K,J]^i \text{ column-wise}.
\]

Repeat labeling row-wise and column-wise labeling for sub-image defined above as \(I[K,J]^{i+1} \), until the intersection of labeling pixels obtained from image \(I[K,J]^i \) row-wise \(\cap \) labeling pixels obtained from image \(I[K,J]^i \) column-wise is equal to \(\Theta \) (Null).

VII. PRACTICAL APPLICATION

To find the labeling connected components in the image using our algorithm, we traced the execution of the program implemented for this purpose and recorded the actions taken by each PUSH and POP operation and also watched the order of data pushed in and popped out of the stack. Figure 5 shows the

original binary image as a sample image. Pixels of the binary image marked from 1 to \(n \) are shown in Figure 6. The flow of search is denoted by a continuous arrow symbol and jump action is denoted as dotted arrow.

Figure 6. Binary image.

Figure 7. (a) is the labeling components. (b) Pixels of the binary image marked (___) and the flow of search or jump action marked (……).

Figure 8, shows the flow of operation row by row from left to right and dead-end pixels is also shown by the underline indicator for the entry. It shows the status of the stack, step by step after each push or pop operation. For the general purpose for implementation, one can save the color of each pixel to be added to contents of each entry of the stack as:

\[
\text{Arr}[i], \text{Arr}[i+1], \text{Arr}[i+2] \text{ in sequence, for } i = 3*j, \ j = 0,\ ..., \text{StackCount}, \text{but it is not recommended.}
\]
The sequence of status structure of the stack, step by step after each push or pop operation, as in Figure 9.

Figure 8. Flow of operations row by row from left to right.

P : PUSH ; O : POP . Numbers underlined represent dead-end Pixels

Figure 9. Shows the status of the stack, step by step after each push or pop operation.
VIII. SAMPLE RESULTS

Figure 10. Comparison between the proposed algorithm and Murray Polygon Algorithms. (Right hand side is the new technique and Left hand side is the old Technique). This comparison with Murray polygon is for its the simplicity of implementation and better describing the proposed algorithm.

IX. RESULTS AND CONCLUSIONS

Despite a large research literature in image processing, the labeling connected components are still difficult and complicated. We tried in this paper to address new technique for this purpose. Compared results of well known technique such as "Murray polygons" and our new novel technique for labeling connected components of a binary image, which has many real life applications and particularly, in medical images, shows that the new algorithm is a novel one and it is accurate. Results of both techniques are presented and implemented and tested on various sample images for comparison purposes. Such selection of other known algorithm is used only for easy implementation, and consequently for better representation our algorithm. All other algorithms in the literature give good results and one can apply it, but the one we present is simple, straightforward and uses minimum storage.

Through this consideration, it has been shown that our algorithm has at most one scan to be pushed or popped operation, which is required for each one complete labeling, as show in the algorithm. This shown the novel of our algorithm against of other known algorithms derived by others, such as [1, 5, 7, 18,10, 15] which show that the minimum of scanning is at least two to four scans in some cases. The algorithm is applied by scanning the pixels of the image row by row from left to right, and the same by applying scanning column by column, from top to bottom, and the result was approximately the same.

Using the convergence criterion of the sub-images denoted by I[K,J] at iterations n,n+1, as:

\[|I_{n+1}^{[K,J]} - I_{n}^{[K,J]}|^2 \leq \varepsilon, \quad (\varepsilon = 10^{-3}) \]

Or using the space \(l_{p=2} \) norm of the array \(X[] \), defined as: for \(p \geq 1 \) be a real number:
\|X\|_{lp}=2\sum_{p=1}^{\frac{1}{2}}(\sum_{i|\text{Arr}[2*i],\text{Arr}[2*i+1]}|I|^2)^{p=1/2},
p \geq 1

and applying the above formula with a convergence criteria as: \|\text{Arr}\|_2 \leq \varepsilon, \ (\varepsilon = 10^{-3}) for the array \text{Arr} as:

\|\text{Arr}\|_2 =
\sum_{i=0,...,n} (\sum_{i|\text{Arr}[2*i],\text{Arr}[2*i+1]}|I|^2)^{1/2},

approximately, similar results were obtained for both cases.

The result obtained due to applying first rows then columns at each scan, has much significant effect for accuracy of the results. In contrary, has disadvantage in term of CPU computer time and storage as well. The sample results are shown in Figure 10. The different results show the accurate identification, allocation and detection of boundary pixels in an efficient manner. The proposed technique will be tested more on complicated images, and will be compared with actual readings of more than two independent radiologists, to check its accuracy on real and actual complicated cases for medical images.

Results obtained show that the proposed algorithm is comparable with other algorithms and cost effective. The samples in Figure 9 show the comparison between two known algorithms for labeling connected components, and its output will be much better than any available techniques. Such technique is claimed by the author to be a novel one in term of accuracy, storage and simplicity with minimum memory storage. The proposed algorithm can be extended to be applied for 3-D and higher dimensional images with more number of gray-scale or colors and will be generalized for complicated cases and real applications as that in actual medical images in the future.

However, since deriving the theoretical upper bound of the number of scans required to complete the labeling of arbitrary connected components is of difficulty, by both our algorithm and others [1, 2, 4, 6, 7, 13, 22, 23], we found also, that the simulation in the experimental previous example is enough to describe such new algorithm.

The relation between the image size and required resource is presented in Figure 11. It shows that the size of image is basically linear with the memory requirement and when the number of pixels increases, the growth of memory requirement becomes slow. Results obtained by the proposed technique are very accurate, especially when detecting the boundary pixels, and compared with the results obtained when applying the other techniques.

X. SUMMARY AND FUTURE WORK

Main ideas arises from this project tells that the connected components labelling operator applied by most of researchers, scans the image by moving along a row until it comes to a point \(p \) (where \(p \) denotes the pixel to be labelled at any stage in the scanning process) for which the value of intensity is 1. When this is true, it examines the (four neighbours or 8 neighbours) of \(p \) which have already been encountered in the scan. For labeling purposes, assign a new label to \(p \) if all (four or eight) neighbours are 0, else if only one neighbour has value equal 1, assign its label to \(p \), else if more than one of the neighbours have value1, assign one of the labels to \(p \). By finishing scan operation, find the equivalence classes and assign or label such class with a certain label. In order to display the image after labelling process, one can give each label a specific color. The main difference in such researches was in the method of labeling and what rules should be applied to end up with better, minimum memory storage, minimum CPU time, and user friendly.
In this research, we have presented an algorithm for connected component labeling algorithms based on the strategy of walk around black pixels to identify their boundaries. Minimizing the work required for scanning phase, and the reduction of the time needed for manipulating the classes for labels are the main strategies of the proposed algorithm. It shows that the new proposed algorithm named WAKED AROUND significantly performs excellent output and much straightforward to implement compared by the other available algorithms and produces consecutive labels, which are convenient for applications. More work recommended to be done in future for a better understanding of best labeling strategy based on scanning rows and columns and after each iteration or by performing iteration after finishing the whole labeling depending on the actual colors and not the black – white binary image. One can think of removing the similar boundary pixels completely with similar label, or by approximation of the color pixels with the average of the 4-Np or 8-Np pixels and repeating the same process only on the remaining ones until no more pixels labels exist in the stack. It is expected that such strategy be much represented and with minimum CPU computer time for the array used for labeling, high accuracy and minimum storage, specially for large images.

ACKNOWLEDGMENTS
This work was supported by the Princess Sumaya University for Technology, during my sabbatical leave from King Hussain School for Computing Science Department during the academic year 2013-2014.

References

About The Author:

Profesor Yahia S. AL-Halabi received his PhD Degree in Computer Science in 1982, from Clarkson University, Potsdam, NY, USA and his MSc degree in Numerical Simulation from the University Of Jordan- Hashemite Kingdom Of Jordan. Since 1982, he served in different academic positions as professor of Computer Science, Chairman of the computer, Director of Computer Center Department at the University of Jordan, Dean Of Faculty of Art and Sciences at Amman Private University, Dean of Faculty of Computer Studies at Arab Open University – Kuwait headquarter office. He joined Princess Sumaya University for Technology in 2005 and continues his research in image processing, Algorithms, E-learning, Image Processing and Simulation. Since September 2008-2010, he appointed as Dean, King Hussein School for Information Technology at Princess Sumaya University for Technology. He is involved in many scientific organizations, locally and internationally and editor for several national and international research journals and member of accreditation and validation group for higher education in Jordan and abroad.