A Review on V-BLAST Detection Method in Wireless MIMO-OFDM System

Sarita Sidam¹, Prof. Pankaj Vyas²
Department of Electronics and Communication Engineering, Sagar Institute of Science and Technology, Bhopal

Abstract - Wireless communication system with multi-antenna arrays has been a field of intensive research on the last years. The application of multiple transmitting antennas and Receiving Antennas both sides can significantly enhance the channel capacity and data rate. The review of the performance limitations of MIMO system becomes very important since it will give lot ideas in understanding and designing the real life MIMO systems. Vertical Bell Laboratories Layered Space Time (V-BLAST). The idea behind Multiple Input and Multiple Output system is that the signals on the transmitter antennas at one end and the receiver antennas at the other end are correlated in such a way that the performance (Bit Error Rate or BER) or the data rate (bits/sec) of the wireless communication system for each MIMO subscriber will be improved.

Keywords - V-Blast, MIMO-OFDM, Zero Forcing, Minimum Mean Square Error.

I. INTRODUCTION

Wireless communication using MIMO has recently emerged as one of the most significant technical breakthroughs in modern communications technology. MIMO systems establish an arbitrary wireless communication a link for which the transmitting end as well as the receiving end is equipped with multiple antenna elements as illustrated in Fig. 1.

The idea behind MIMO is that the signals on the transmit (TX) antennas at one end and the receive (RX) antennas at the other end are “combined” in such a way that the quality (Bit Error Rate or BER) or the data rate (bits/sec) of the communication for each MIMO user will be improved. Such an advantage can be used to increase both the network’s quality of service and the operator's revenues significantly.

Ultimate goals of the future generation wireless communication system are high data rate, high-performance and optimum utilization of the bandwidth. MIMO wireless systems help to achieve that goal.

The achievable capacity and performance depend on the channel conditions and on the structure of the transmit signal. In order to achieve the goal the design MIMO system architecture influences the complexity of the transmitter and, particularly the receiver. The MIMO coding techniques can be split into three groups such as: space-time coding (STC), space division multiplexing (SDM) and beam forming. A large number of low complexity linear MIMO detectors have been studied so far, generally these linear detectors are based on minimum mean-square error (MMSE), based on zero-forcing (ZF) and QR Decomposition. But the performance of this detector can be poor, especially in MIMO systems that use a less number of receiving antenna branches and equal to transmitting antennas. To improve performance, a so called vertical Bell laboratories layered space-time (V-BLAST) algorithm has been introduced; this performs successive interference cancellations in the appropriate order. VBLAST system with Successive Interference Cancellation (SIC) detector helps to achieve the high spectral efficiency with reasonable decoding complexity, in rich scattering environments through exploiting spatial dimension and also V-BLAST yields higher diversity gains and improves bit error-rate (BER) performance.

The V-BLAST MIMO channel model is as shown in Fig. 1. The transmitters and receivers are assumed to be BPSK modulators operating with co-channels as the case with the transmitters/receivers. The channel is assumed to be AWGN and the channel time variation is considered negligible over L symbol periods which comprise a data streams. The signal arriving at the receiver is

\[r = Ha + n \]

Where H is the matrix channel, a is the transmitted symbol vector, and n is the channel noise. The V-BLAST detection process involves the computing of nulling vectors wki, where

\[S = \{ k1, k2, k3, \ldots, kMt \} \]

and S is a set of permutation of the integers 1,2, ..., Mt by which orders of the components of a are extracted.
The k-th nulling vector is defined as the unique minimum norm vector satisfying the condition

$$w_kT.(H)kj = \begin{cases} 0 & \text{for } j \geq 1 \\ 1 & \text{for } j = 1 \end{cases} = \begin{cases} 0 & \text{for } j \geq 1 \\ 1 & \text{for } j = 1 \end{cases}$$ (3)

The output bit stream of a V-BLAST MIMO can be expressed in the min-norm vectors with a and n. The symbol cancellation and linear nulling techniques are used to perform detection. After a transmitted signal vector a is received, interferences are cancelled out using symbol cancellation so the received vector has fewer interferers. The decision statistic at the receiver is

$$y_{k1} = w_{k1}T \times r$$ (4)

Where wk1 is the nulling vector. Quantization of yk1 is done to obtain a component. With assumption that ak1 is cancelled from the received vector R.

$$R = r - ak1(H)k1$$ (5)

Where (H)k1 is the k-th column of the matrix channel H. This Cancellation is repeated for components k2 ... kMT for the all received vectors.

The complete detection algorithm can be summarized as recursive as follows:

Initialize:

$$i \leftarrow 1$$
$$r1 = r$$

$$G1 = (HHH + \sigma 2INr)^{-1} HH$$
$$k1 = arg \min j \| (G1)j \|_2$$

Recursive:

$$w_k = (Gi)k$$
$$y_k = wkT \times r_i$$
$$\delta k = sign(y_k)$$
$$r_{i+1} = r_i - \delta k(H)k_i$$

$$Gi+1 = ((HH^* + \sigma 2INr)^{-1} HH^*$$

$$ki+1 = arg \min \| (Gi+1)j \|_2$$
$$i \leftarrow i + 1$$

II. V-BLAST MIMO DETECTION TECHNIQUE

The V-BLAST system being a Multiple-Input Multiple Output (MIMO) system that includes multiple transmitting and receiving antennas, the data being transmitted from the multiple transmitting antennas simultaneously as multiple data layers, each data layer being derived from same signal constellation, the data received at a receiver being in the form of a vector.

The classification of MIMO detection techniques adopted for V-BLAST is shown in Fig.2. The V-BLAST MIMO detection method comprising the following steps:

- Calculating a matrix on the basis of channel matrix of the V-BLAST system post-detection Signal to Noise Ratio (SNR);
- Updating the channel matrix by deleting a column that corresponds to a maximum diagonal entry of the matrix, the maximum diagonal entry corresponding to a minimum
- Calculating y with updated received vectors for a data layer, the data layer corresponding to the maximum diagonal entry, y being the size of the signal constellation, the updated received vectors being calculated for all possible constellation points of the signal constellation of the data layer, the data layer corresponding to the maximum diagonal entry corresponds to the minimum post-detection SNR.
- vi. Obtaining a set of reduced possible solution vectors from the SIC iterations; and F. Detecting a solution vector nearest to the received vector from the set of the reduced possible solution vectors.

A. Zero Forcing (ZF):

This is a simple linear receiver detection technique with low computational complexity and suffers from noise enhancement. It works best with high SNR. The solution of the ZF is given by

$$S = HHX$$

$$H^* = (H^* H) - I H^*$$ (7)

Where H# represents the pseudo-inverse of H.

B. Minimum Mean Square Error (MMSE):

The MMSE receiver suppresses both the interference and noise components, whereas the ZF receiver removes only the interference components. This implies that the mean square error between the transmitted symbols and the estimate of the receiver is minimized. Hence, MMSE is superior to ZF in the presence of noise.
C. Q-R Decomposition:

The effective way of solving matrix inversion problem is using QR decomposition. Let Q is unitary matrix and R is upper triangular matrix, Then V= QR, where Q is unitary matrix and R is an upper triangular matrix. The QR decomposition is given by

\[V = (QR)^{-1} = R^{-1} Q^{-1} \]

(9)

Where \((\cdot)^{-1} \) is Hermitian Transpose.

Matched Filter:

The matched filter is the optimal linear filter for maximizing the signal to noise ratio (SNR) in the presence of additive stochastic noise. Matched filters are commonly used in radar, in which a signal is sent out, and we measure the reflected signals, looking for something similar to what was sent out. Two-dimensional matched filters are commonly used in image processing, e.g., to improve SNR for X-ray pictures. A general representation for a matched filter is illustrated in Figure below.

![Matched Filter Diagram](image)

Fig.3. Matched Filter

The filter input \(x(t) \) consists of a pulse signal \(g(t) \) corrupted by additive channel noise \(w(t) \), as shown by

\[x(t) = g(t) + w(t), \quad 0 \leq t \leq T \]

Where \(T \) is an arbitrary observation interval. The pulse signal \(g(t) \) may represent a binary symbol 1 or 0 in a digital communication system. The \(w(t) \) is the sample function of a white noise process of zero mean and power spectral density \(N_o/2 \). The source of uncertainty lies in the noise \(w(t) \). The function of the receiver is to detect the pulse signal \(g(t) \) in an optimum manner, given the received signal \(x(t) \). To satisfy this requirement, we have to optimize the design of the filter so as to minimize the effects of noise at the filter output in some statistical sense, and thereby enhance the detection of the pulse signal \(g(t) \).
In 2010 Shreedhar. A. Joshi, Dr. Rukmini T S, Dr.Mahesh H M presented their work “Performance Analysis of MIMO Technology using V-BLAST Technique for Different Linear Detectors in a Slow Fading Channel[4] in Proceedings of 2010 International Conference on Signal Processing, Communication, Computing and Networking Technologies (ICSCCN 2010) in which they have used V-Blast MIMO System with ZF-OSIC, MMSE-OSIC technique in Rayleigh Fading Channel with BPSK and QPSK modulation and evaluated the value of BER which is between 10^{-1} at 0dB SNR and 10^{-3.5} at 13dB.

In 2009 Kai Wu, Lin Sang, He Wang, Cong Xiong, Dacheng Yang, Member, IEEE, Xin Zhang, Member, IEEE presented their work “Detection Algorithm for V-BLAST Systems with Novel Interference Cancellation Technique”[5].

Error! Reference source not found. in IEEE conference on communication Technology proceedings in which they have used V-Blast MIMO System with ZF-OSIC, MMSE-OSIC technique in Flat Rayleigh Fading Channel with QPSK & 16-QAM modulation and evaluated the value of BER which is between 10^{-1} at 0dB SNR and 10^{-3.75} at 20dB.

In 2008 Wu Nian; Wang Zhongpeng, Zhang Shaozhong presented their work “Performance Comparison of Sub-optimal Algorithms Based on MIMO-OFDM Systems”[6] in 11th IEEE conference on communication Technology proceedings in which they have used V-Blast MIMO System with ZF, MMSE and QR detection technique in Frequency Selective Fading Channel with IFFT modulation. In this work, several detection algorithms based on MIMO-OFDM systems are briefly introduced, and their performances are evaluated by computer simulation. The simulation results indicate that performance of these algorithms for MIMO-OFDM system is similar to the performance for flat MIMO system. The value of BER which was found between 10^{-1} at 0dB SNR and 10^{-3.7} at 20dB.

In 2007 Jiming Chen, Shan Jin, and Yonggang Wang presented their work “Reduced Complexity MMSE-SIC Detector in V-BLAST Systems” [7] in 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’07) in which they have used V-Blast MIMO System with MMSE-SIC detection technique with 4-QAM modulation in Fading Channel and theoretical and experimental studies have shown that layered space-time architectures like the Vertical Bell labs Layered Space-Time (V-BLAST) system can exploit the capacity advantage of multiple antenna systems in rich-scattering environments. The simulation result shown the value of BER which was found between 10^{-1} at 6dB SNR and 10^{-3.75} at 20dB SNR.

REFERENCES

International Journal of Emerging Technology and Advanced Engineering

Author's Profile

Sarita Sidam is a research scholar at Sagar Institute of Science and Technology under RGPV, Bhopal. She is pursuing her Master in Technology in Digital Communication. She has keen interest in wireless communication systems and advancement in the performance of MIMO technology.

Prof. Pankaj Vyas is working as an Asst. Prof. at Sagar Institute of Science and Technology under RGPV, Bhopal. He has done his specialization in modern digital communication.